Spring Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70track

Free Amazon Web Services SAP-C02 Practice Exam with Questions & Answers | Set: 7

Questions 91

A company is running a workload that consists of thousands of Amazon EC2 instances. The workload is running in a VPC that contains several public subnets and private subnets. The public subnets have a route for 0.0.0.0/0 to an existing internet gateway. The private subnets have a route for 0.0.0.0/0 to an existing NAT gateway.

A solutions architect needs to migrate the entire fleet of EC2 instances to use IPv6. The EC2 instances that are in private subnets must not be accessible from the public internet.

What should the solutions architect do to meet these requirements?

Options:
A.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Update all the VPC route tables, and add a route for ::/0 to the internet gateway.

B.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Update the VPC route tables for all private subnets, and add a route for ::/0 to the NAT gateway.

C.

Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Create an egress-only internet gateway. Update the VPC route tables for all private subnets, and add a route for ::/0 to the egress-only internet gateway.

D.

Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Create a new NAT gateway, and enable IPv6 support. Update the VPC route tables for all private subnets, and add a route for ::/0 to the IPv6-enabled NAT gateway.

Questions 92

A company has hundreds of AWS accounts. The company uses an organization in AWS Organizations to manage all the accounts. The company has turned on all features.

A finance team has allocated a daily budget for AWS costs. The finance team must receive an email notification if the organization's AWS costs exceed 80% of the allocated budget. A solutions architect needs to implement a solution to track the costs and deliver the notifications.

Which solution will meet these requirements?

Options:
A.

In the organization's management account, use AWS Budgets to create a budget that has a daily period. Add an alert threshold and set the value to 80%. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

B.

In the organization’s management account, set up the organizational view feature for AWS Trusted Advisor. Create an organizational view report for cost optimization.Set an alert threshold of 80%. Configure notification preferences. Add the email addresses of the finance team.

C.

Register the organization with AWS Control Tower. Activate the optional cost control (guardrail). Set a control (guardrail) parameter of 80%. Configure control (guardrail) notification preferences. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

D.

Configure the member accounts to save a daily AWS Cost and Usage Report to an Amazon S3 bucket in the organization's management account. Use Amazon EventBridge to schedule a daily Amazon Athena query to calculate the organization’s costs. Configure Athena to send an Amazon CloudWatch alert if the total costs are more than 80% of the allocated budget. Use Amazon Simple Notification Service (Amazon SNS) to notify the finance team.

Questions 93

Question:

A company hosts an ecommerce site using EC2, ALB, and DynamoDB in one AWS Region. The site uses a custom domain in Route 53. The company wants toreplicate the stack to a second Regionfordisaster recoveryandfaster accessfor global customers.

What should the architect do?

Options:
A.

Use CloudFormation to deploy to the second Region. Use Route 53 latency-based routing. Enable global tables in DynamoDB.

B.

Use the console to recreate the infra manually in the second Region. Use weighted routing.

C.

Replicate only the S3 and DynamoDB data. Use Route 53 failover routing.

D.

Use Beanstalk and DynamoDB Streams for replication. Use latency-based routing.

Questions 94

A company is migrating to the cloud. It wants to evaluate the configurations of virtual machines in its existing data center environment to ensure that it can size new Amazon EC2 instances accurately. The company wants to collect metrics, such as CPU. memory, and disk utilization, and it needs an inventory of what processes are running on each instance. The company would also like to monitor network connections to map communications between servers.

Which would enable the collection of this data MOST cost effectively?

Options:
A.

Use AWS Application Discovery Service and deploy the data collection agent to each virtual machine in the data center.

B.

Configure the Amazon CloudWatch agent on all servers within the local environment and publish metrics to Amazon CloudWatch Logs.

C.

Use AWS Application Discovery Service and enable agentless discovery in the existing visualization environment.

D.

Enable AWS Application Discovery Service in the AWS Management Console and configure the corporate firewall to allow scans over a VPN.

Questions 95

A company has developed a hybrid solution between its data center and AWS. The company uses Amazon VPC and Amazon EC2 instances that send application logs to Amazon CloudWatch. The EC2 instances read data from multiple relational databases that are hosted on premises.

The company wants to monitor which EC2 instances are connected to the databases in near real time. The company already has a monitoring solution that uses Splunk on premises. A solutions architect needs to determine how to send networking traffic to Splunk.

How should the solutions architect meet these requirements?

Options:
A.

Enable VPC flow logs and send them to CloudWatch. Create an AWS Lambda function to periodically export the CloudWatch logs to an Amazon S3 bucket by using the predefined export function. Generate ACCESS_KEY and SECRET_KEY AWS credentials. Configure Splunk to pull the logs from the S3 bucket by using those credentials.

B.

Create an Amazon Data Firehose delivery stream with Splunk as the destination. Configure a pre-processing AWS Lambda function with a Firehose stream processor that extracts individual log events from records sent by CloudWatch Logs subscription filters. Enable VPC flow logs and send them to CloudWatch. Create a CloudWatch Logs subscription that sends log events to the Firehose delivery stream.

C.

Ask the company to log every request that is made to the databases along with the EC2 instance IP address. Export the CloudWatch logs to an Amazon S3 bucket. Use Amazon Athena to query the logs grouped by database name. Export Athena results to another S3 bucket. Invoke an AWS Lambda function to automatically send any new file that is put in the S3 bucket to Splunk.

D.

Send the CloudWatch logs to an Amazon Kinesis data stream with Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics). Configure a 1-minute sliding window to collect the events. Create a SQL query that uses the anomaly detection template to monitor any networking traffic anomalies in near real time. Send the result to an Amazon Data Firehose delivery stream with Splunk as the destination.

Questions 96

A financial services company receives a regular data feed from its credit card servicing partner Approximately 5.000 records are sent every 15 minutes in plaintext, delivered over HTTPS directly into an Amazon S3 bucket with server-side encryption. This feed contains sensitive credit card primary account number (PAN) data The company needs to automatically mask the PAN before sending the data to another S3 bucket for additional internal processing. The company also needs to remove and merge specific fields, and then transform the record into JSON format Additionally, extra feeds are likely to be added in the future, so any design needs to be easily expandable.

Which solutions will meet these requirements?

Options:
A.

Trigger an AWS Lambda function on file delivery that extracts each record and writes it to an Amazon SQS queue. Trigger another Lambda function when new messages arrive in the SQS queue to process the records, writing the results to a temporary location in Amazon S3. Trigger a final Lambda function once the SQS queue is empty to transform the records into JSON format and send the results to another S3 bucket for internal processing.

B.

Trigger an AWS Lambda function on file delivery that extracts each record and writes it to an Amazon SQS queue. Configure an AWS Fargate container application to automatically scale to a single instance when the SQS queue contains messages. Have the application process each record, and transform the record into JSON format. When the queue is empty, send the results to another S3bucket for internal processing and scale down the AWS Fargate i

C.

Create an AWS Glue crawler and custom classifier based on the data feed formats and build a table definition to match. Trigger an AWS Lambda function on file delivery to start an AWS Glue ETL job to transform the entire record according to the processing and transformation requirements. Define the output format as JSON. Once complete, have the ETL job send the results to another S3 bucket for internal processing.

D.

Create an AWS Glue crawler and custom classifier based upon the data feed formats and build a table definition to match. Perform an Amazon Athena query on file delivery to start an Amazon EMR ETL job to transform the entire record according to the processing and transformation requirements. Define the output format as JSON. Once complete, send the results to another S3 bucket for internal processing and scale down the EMR cluster.

Questions 97

A company is processing videos in the AWS Cloud by using Amazon EC2 instances in an Auto Scaling group. It takes 30 minutes to process a video. Several EC2 instances scale in and out depending on the number of videos in an Amazon Simple Queue Service (Amazon SQS) queue.

The company has configured the SQS queue with a redrive policy that specifies a target dead-letter queue and a maxReceiveCount of 1. The company has set the visibility timeout for the SQS queue to 1 hour. The company has set up an Amazon CloudWatch alarm to notify the development team when there are messages in the dead-letter queue.

Several times during the day, the development team receives notification that messages are in the dead-letter queue and that videos have not been processed properly. An investigation finds no errors in the application logs.

How can the company solve this problem?

Options:
A.

Turn on termination protection for the EC2 instances.

B.

Update the visibility timeout for the SOS queue to 3 hours.

C.

Configure scale-in protection for the instances during processing.

D.

Update the redrive policy and set maxReceiveCount to 0.

Questions 98

A financial services company in North America plans to release a new online web application to its customers on AWS . The company will launch the application in the us-east-1 Region on Amazon EC2 instances. The application must be highly available and must dynamically scale to meet user traffic. The company also wants to implement a disaster recovery environment for the application in the us-west-1 Region by using active-passive failover.

Which solution will meet these requirements?

Options:
A.

Create a VPC in us-east-1 and a VPC in us-west-1 Configure VPC peering In the us-east-1VPC. create an Application Load Balancer (ALB) that extends across multiple Availability Zones in both VPCs Create an Auto Scaling group that deploys the EC2 instances across the multiple Availability Zones in both VPCs Place the Auto Scaling group behind the ALB.

B.

Create a VPC in us-east-1 and a VPC in us-west-1. In the us-east-1 VPC. create an Application Load Balancer (ALB) that extends across multiple Availability Zones in that VPC. Create an Auto Scaling group that deploys the EC2 instances across the multiple Availability Zones in the us-east-1 VPC Place the Auto Scaling group behind the ALB Set up the same configuration in the us-west-1 VPC. Create an Amazon Route 53 hosted zone Create separate

C.

Create a VPC in us-east-1 and a VPC in us-west-1 In the us-east-1 VPC. create an Application Load Balancer (ALB) that extends across multiple Availability Zones in that VPC Create an Auto Scaling group that deploys the EC2 instances across the multiple Availability Zones in the us-east-1 VPC Place the Auto Scaling group behind the ALB Set up the same configuration in the us-west-1 VPC Create an Amazon Route 53 hosted zone. Create separate r

D.

Create a VPC in us-east-1 and a VPC in us-west-1 Configure VPC peering In the us-east-1 VPC. create an Application Load Balancer (ALB) that extends across multiple Availability Zones in Create an Auto Scaling group that deploys the EC2 instances across the multiple Availability Zones in both VPCs Place the Auto Scaling group behind the ALB Create an Amazon Route 53 host.. Create a record for the ALB.

Questions 99

A company wants to migrate to AWS. The company wants to use a multi-account structure with centrally managed access to all accounts and applications. The company also wants to keep the traffic on a private network. Multi-factor authentication (MFA) is required at login, and specific roles are assigned to user groups.

The company must create separate accounts for development. staging, production, and shared network. The production account and the shared network account must have connectivity to all accounts. The development account and the staging account must have access only to each other.

Which combination of steps should a solutions architect take 10 meet these requirements? (Choose three.)

Options:
A.

Deploy a landing zone environment by using AWS Control Tower. Enroll accounts and invite existing accounts into the resulting organization in AWS Organizations.

B.

Enable AWS Security Hub in all accounts to manage cross-account access. Collect findings through AWS CloudTrail to force MFA login.

C.

Create transit gateways and transit gateway VPC attachments in each account. Configure appropriate route tables.

D.

Set up and enable AWS IAM Identity Center (AWS Single Sign-On). Create appropriate permission sets with required MFA for existing accounts.

E.

Enable AWS Control Tower in all Recounts to manage routing between accounts. Collect findings through AWS CloudTrail to force MFA login.

F.

Create IAM users and groups. Configure MFA for all users. Set up Amazon Cognito user pools and identity pools to manage access to accounts and between accounts.

Questions 100

A company is migrating an on-premises application and a MySQL database to AWS. The application processes highly sensitive data, and new data is constantly updated in the database. The data must not be transferred over the internet. The company also must encrypt the data in transit and at rest.

The database is 5 TB in size. The company already has created the database schema in an Amazon RDS for MySQL DB instance. The company has set up a 1 Gbps AWS Direct Connect connection to AWS. The company also has set up a public VIF and a private VIF. A solutions architect needs to design a solution that will migrate the data to AWS with the least possible downtime.

Which solution will meet these requirements?

Options:
A.

Perform a database backup. Copy the backup files to an AWS Snowball Edge Storage Optimized device. Import the backup to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

B.

Use AWS Database Migration Service (AWS DMS) to migrate the data to AWS. Create a DMS replication instance in a private subnet. Create VPC endpoints for AWS DMS. Configure a DMS task to copy data from the on-premises database to the DB instance by using full load plus change data capture (CDC). Use the AWS Key Management Service (AWS KMS) default key for encryption at rest. Use TLS for encryption in transit.

C.

Perform a database backup. Use AWS DataSync to transfer the backup files to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

D.

Use Amazon S3 File Gateway. Set up a private connection to Amazon S3 by using AWS PrivateLink. Perform a database backup. Copy the backup files to Amazon S3. Use server-side encryption with Amazon S3 managed encryption keys (SSE-S3) for encryption at rest. Use TLS for encryption in transit. Import the data from Amazon S3 to the DB instance.

Questions 101

A software company hosts an application on AWS with resources in multiple AWS accounts and Regions. The application runs on a group of Amazon EC2 instances in an application VPC located in the us-east-1 Region with an IPv4 CIDR block of 10.10.0.0/16. In a different AWS account, a shared services VPC is located in the us-east-2 Region with an IPv4 CIDR block of 10.10.10.0/24. When a cloud engineer uses AWS CloudFormation to attempt to peer the application

VPC with the shared services VPC, an error message indicates a peering failure.

Which factors could cause this error? (Choose two.)

Options:
A.

The IPv4 CIDR ranges of the two VPCs overlap

B.

The VPCs are not in the same Region

C.

One or both accounts do not have access to an Internet gateway

D.

One of the VPCs was not shared through AWS Resource Access Manager

E.

The IAM role in the peer accepter account does not have the correct permissions

Questions 102

A company has a website that serves many visitors. The company deploys a backend service for the website in a primary AWS Region and a disaster recovery (DR) Region.

A single Amazon CloudFront distribution is deployed for the website. The company creates an Amazon Route 53 record set with health checks and a failover routing policy for the primary Region's backend service. The company configures the Route 53 record set as an origin for the CloudFront distribution. The company configures another record set that points to the backend service's endpoint in the DR Region as a secondary failover record type. The TTL for both record sets is 60 seconds.

Currently, failover takes more than 1 minute. A solutions architect must design a solution that will provide the fastest failover time.

Which solution will achieve this goal?

Options:
A.

Deploy an additional CloudFront distribution. Create a new Route 53 failover record set with health checks for both CloudFront distributions.

B.

Set the TTL to 1 second for the existing Route 53 record sets that are used for the backend service in each Region.

C.

Create new record sets for the backend services by using a latency routing policy. Use the record sets as an origin in the CloudFront distribution.

D.

Create a CloudFront origin group that includes two origins, one for each backend service Region. Configure origin failover as a cache behavior for the CloudFront distribution.

Questions 103

A company runs an application on Amazon EC2 and AWS Lambda. The application stores temporary data in Amazon 53. The 53 objects are deleted after 24 hours.

The company deploys new versions of the application by launching AWS CloudFormation stacks. The stacks create the required resources. After validating a new version, the company deletes the old stack. The deletion of an old development stack recently failed. A solutions architect needs to resolve this Issue without major architecture changes.

Which solution will meet these requirements?

Options:
A.

Create a Lambda function to delete objects from an 53 bucket. Add the Lambda function as acustom resource in the CloudFormation stack with a DependsOn attribute that points to the S3 bucket resource.

B.

Modify the CkxidFormatton stack to attach a DeletionPolicy attribute with a value of Delete to the S3 bucket.

C.

Update the CloudFormation stack to add a DeletionPolicy attribute with a value of Snapshot for the S3 bucket resource.

D.

Update the CloudFormation template to create an Amazon EFS file system to store temporary files Instead of Amazon S3. Configure the Lambda functions to run in the same VPC as the EFS file system.

Questions 104

A scientific company needs to process text and image data from an Amazon S3 bucket. The data is collected from several radar stations during a live, time-critical phase of a deep space mission. The radar stations upload the data to the source S3 bucket. The data is prefixed by radar station identification number.

The company created a destination S3 bucket in a second account. Data must be copied from the source S3 bucket to the destination S3 bucket to meet a compliance objective. The replication occurs through the use of an S3 replication rule to cover all objects in the source S3 bucket.

One specific radar station is identified as having the most accurate data. Data replication at this radar station must be monitored for completion within 30 minutes after the radar station uploads the objects to the source S3 bucket.

What should a solutions architect do to meet these requirements?

Options:
A.

Set up an AWS DataSync agent to replicate the prefixed data from the source S3 bucket to the destination S3 bucket. Select to use all available bandwidth on the task, and monitor the task to ensure that it is in the TRANSFERRING status. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert if this status changes.

B.

In the second account, create another S3 bucket to receive data from the radar station with the most accurate data. Set up a new replication rule for this new S3 bucket to separate the replication from the other radar stations. Monitor the maximum replication time to the destination. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert when the time exceeds the desired threshold.

C.

Enable Amazon S3 Transfer Acceleration on the source S3 bucket, and configure the radar station with the most accurate data to use the new endpoint. Monitor the S3 destination bucket's TotalRequestLatency metric. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert if this status changes.

D.

Create a new S3 replication rule on the source S3 bucket that filters for the keys that use the prefix of the radar station with the most accurate data. Enable S3 Replication Time Control (S3 RTC). Monitor the maximum replication time to the destination. Create an Amazon EventBridge (Amazon CloudWatch Events) rule to trigger an alert when the time exceeds the desired threshold.

Questions 105

A company is hosting a critical application on a single Amazon EC2 instance. The application uses an Amazon ElastiCache for Redis single-node cluster for an in-memory data store. The application uses an Amazon RDS for MariaDB DB instance for a relational database. For the application to function, each piece of the infrastructure must be healthy and must be in an active state.

A solutions architect needs to improve the application's architecture so that the infrastructure can automatically recover from failure with the least possible downtime.

Which combination of steps will meet these requirements? (Select THREE.)

Options:
A.

Use an Elastic Load Balancer to distribute traffic across multiple EC2 instances. Ensure that the EC2 instances are part of an Auto Scaling group that has a minimum capacity of two instances.

B.

Use an Elastic Load Balancer to distribute traffic across multiple EC2 instances Ensure that the EC2 instances are configured in unlimited mode.

C.

Modify the DB instance to create a read replica in the same Availability Zone. Promote the read replica to be the primary DB instance in failure scenarios.

D.

Modify the DB instance to create a Multi-AZ deployment that extends across two Availability Zones.

E.

Create a replication group for the ElastiCache for Redis cluster. Configure the cluster to use an Auto Scaling group that has a minimum capacity of two instances.

F.

Create a replication group for the ElastiCache for Redis cluster. Enable Multi-AZ on the cluster.