Weekend Sale 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sale65best

Free Amazon Web Services SAP-C02 Practice Exam with Questions & Answers | Set: 11

Questions 151

A company is planning to migrate to the AWS Cloud. The company hosts many applications on Windows servers and Linux servers. Some of the servers are physical, and some of the servers are virtual. The company uses several types of databases in its on-premises environment. The company does not have an accurate inventory of its on-premises servers and applications.

The company wants to rightsize its resources during migration. A solutions architect needs to obtain information about the network connections and the application relationships. The solutions architect must assess the company's current environment and develop a migration plan.

Which solution will provide the solutions architect with the required information to develop the migration plan?

Options:
A.

Use Migration Evaluator to request an evaluation of the environment from AWS. Use the AWS Application Discovery Service Agentless Collector to import the details into a Migration Evaluator Quick Insights report.

B.

Use AWS Migration Hub and install the AWS Application Discovery Agent on the servers. Deploy the Migration Hub Strategy Recommendations application data collector. Generate a report by using Migration Hub Strategy Recommendations.

C.

Use AWS Migration Hub and run the AWS Application Discovery Service Agentless Collector on the servers. Group the servers and databases by using AWS Application Migration Service. Generate a report by using Migration Hub Strategy Recommendations.

D.

Use the AWS Migration Hub import tool to load the details of the company's on-premises environment. Generate a report by using Migration Hub Strategy Recommendations.

Amazon Web Services SAP-C02 Premium Access
Questions 152

Question:

A company needs to copy backups of 40 RDS for MySQL databases from a production account to a central backup account within AWS Organizations. The databases usedefault AWS-managed KMS encryption keys. The backups must be stored in aWORM (Write Once Read Many)backup account.

What is the correct approach to enable cross-account backup?

Options:
A.

Restore the databases with customer-managed KMS keys and use AWS Backup with cross-account vault sharing.

B.

Share the default KMS keys with the central account and create backup vaults in the central account.

C.

Use a Lambda function to decrypt and copy the snapshots to the central account.

D.

Use a Lambda function to share and re-encrypt snapshots across accounts using the default KMS key.

Questions 153

A team of data scientists is using Amazon SageMaker instances and SageMaker APIs to train machine learning (ML) models. The SageMaker instances are deployed in a

VPC that does not have access to or from the internet. Datasets for ML model training are stored in an Amazon S3 bucket. Interface VPC endpoints provide access to Amazon S3 and the SageMaker APIs.

Occasionally, the data scientists require access to the Python Package Index (PyPl) repository to update Python packages that they use as part of their workflow. A solutions architect must provide access to the PyPI repository while ensuring that the SageMaker instances remain isolated from the internet.

Which solution will meet these requirements?

Options:
A.

Create an AWS CodeCommit repository for each package that the data scientists need to access. Configure code synchronization between the PyPl repositoryand the CodeCommit repository. Create a VPC endpoint for CodeCommit.

B.

Create a NAT gateway in the VPC. Configure VPC routes to allow access to the internet with a network ACL that allows access to only the PyPl repositoryendpoint.

C.

Create a NAT instance in the VPC. Configure VPC routes to allow access to the internet. Configure SageMaker notebook instance firewall rules that allow access to only the PyPI repository endpoint.

D.

Create an AWS CodeArtifact domain and repository. Add an external connection for public:pypi to the CodeArtifact repository. Configure the Python client touse the CodeArtifact repository. Create a VPC endpoint for CodeArtifact.

Questions 154

A company hosts its primary API on AWS using Amazon API Gateway and AWS Lambda functions. Internal applications and external customers use this API. Some customers also use a legacy API hosted on a standalone EC2 instance.

The company wants to increase security across all APIs to prevent denial of service (DoS) attacks, check for vulnerabilities, and guard against common exploits.

What should a solutions architect do to meet these requirements?

Options:
A.

Use AWS WAF to protect both APIs. Configure Amazon Inspector to analyze the legacy API. Configure Amazon GuardDuty to monitor for malicious attempts to access the APIs.

B.

Use AWS WAF to protect the API Gateway API. Configure Amazon Inspector to analyze both APIs. Configure Amazon GuardDuty to block malicious attempts.

C.

Use AWS WAF to protect the API Gateway API. Configure Amazon Inspector to analyze the legacy API. Configure Amazon GuardDuty to monitor for malicious attempts to access the APIs.

D.

Use AWS WAF to protect the API Gateway API. Configure Amazon Inspector to protect the legacy API. Configure Amazon GuardDuty to block malicious attempts.

Questions 155

A company hosts a Git repository in an on-premises data center. The company uses webhooks to invoke functionality that runs in the AWS Cloud. The company hosts the webhook logic on a set of Amazon EC2 instances in an Auto Scaling group that the company set as a target for an Application Load Balancer (ALB). The Git server calls the ALB for the configured webhooks. The company wants to move the solution to a serverless architecture.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

For each webhook, create and configure an AWS Lambda function URL. Update the Git servers to call the individual Lambda function URLs.

B.

Create an Amazon API Gateway HTTP API. Implement each webhook logic in a separate AWS Lambda function. Update the Git servers to call the API Gateway endpoint.

C.

Deploy the webhook logic to AWS App Runner. Create an ALB, and set App Runner as the target. Update the Git servers to call the ALB endpoint.

D.

Containerize the webhook logic. Create an Amazon Elastic Container Service (Amazon ECS) cluster, and run the webhook logic in AWS Fargate. Create an Amazon API Gateway REST API, and set Fargate as the target. Update the Git servers to call the API Gateway endpoint.

Questions 156

A company is running an application in the AWS Cloud. The application consists of microservices that run on a fleet of Amazon EC2 instances in multiple Availability Zones behind an Application Load Balancer. The company recently added a new REST API that was implemented in Amazon API Gateway. Some of the older microservices that run on EC2 instances need to call this new API.

The company does not want the API to be accessible from the public internet and does not want proprietary data to traverse the public internet

What should a solutions architect do to meet these requirements?

Options:
A.

Create an AWS Site-to-Site VPN connection between the VPC and the API Gateway. Use API Gateway to generate a unique API key for each microservice. Configure the API methods to require the key.

B.

Create an interface VPC endpoint for API Gateway, and set an endpoint policy to only allow access to the specific API Add a resource policy to API Gateway to only allow access from the VPC endpoint. Change the API Gateway endpoint type to private.

C.

Modify the API Gateway to use 1AM authentication. Update the 1AM policy for the 1AM role that is assigned to the EC2 Instances to allow access to the API Gateway. Move the API Gateway into a new VPC Deploy a transit gateway and connect the VPCs.

D.

Create an accelerator in AWS Global Accelerator, and connect the accelerator to the API Gateway. Update the route table for all VPC subnets with a route to the created Global Accelerator endpoint IP address. Add an API key for each service to use for authentication.

Questions 157

Question:

A company is modernizing a legacy.NET Frameworkapplication backed by SQL Server. Requirements:

Containerize into microservices.

Control OS patches and storage.

Add load balancing.

Ensure high availability.Which solution meets all of these with minimal refactoring?

Options:
A.

Use App2Container to deploy on ECS EC2 with ALB and RDS for SQL Server.

B.

Use App2Container on ECS EC2 with NLB and Aurora MySQL.

C.

Use Porting Assistant and EKS with Fargate and Aurora MySQL.

D.

Use Porting Assistant and EKS with Fargate and RDS SQL Server.

Questions 158

A company has automated the nightly retraining of its machine learning models by using AWS Step Functions. The workflow consists of multiple steps that use AWS Lambda Each step can fail for various reasons and any failure causes a failure of the overall workflow

A review reveals that the retraining has failed multiple nights in a row without the company noticing the failure A solutions architect needs to improve the workflow so that notifications are sent for all types of failures in the retraining process

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE)

Options:
A.

Create an Amazon Simple Notification Service (Amazon SNS) topic with a subscription of type "Email" that targets the team's mailing list.

B.

Create a task named "Email" that forwards the input arguments to the SNS topic

C.

Add a Catch field all Task Map. and Parallel states that have a statement of "Error Equals": [ “States. ALL”] and "Next": "Email".

D.

Add a new email address to Amazon Simple Email Service (Amazon SES). Verify the email address.

E.

Create a task named "Email" that forwards the input arguments to the SES email address

F.

Add a Catch field to all Task Map, and Parallel states that have a statement of "Error Equals": [ "states. Runtime”] and "Next": "Email".

Questions 159

A company is running several applications in the AWS Cloud. The applications are specific to separate business units in the company. The company is running the components of the applications in several AWS accounts that are in an organization in AWS Organizations. Every cloud resource in the company's organization has a tag that is named BusinessUnit. Every tag already has the appropriate value of the business unit name. The company needs to allocate its cloud costs to different business units. The company also needs to visualize the cloud costs for each business unit. Which solution will meet these requirements?

Options:
A.

In the organization's management account, create a cost allocation tag that is named BusinessUnit. Also in the management account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure the S3 bucket as the destination for the AWS CUR. From the management account, query the AWS CUR data by using Amazon Athena. Use Amazon QuickSight for visualization.

B.

In each member account, create a cost allocation tag that is named BusinessUnit. In the organization's management account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure the S3 bucket as the destination for the AWS CUR. Create an Amazon CloudWatch dashboard for visualization.

C.

In the organization's management account, create a cost allocation tag that is named BusinessUnit. In each member account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure each S3 bucket as the destination for its respective AWS CUR. In the management account, create an Amazon CloudWatch dashboard for visualization.

D.

In each member account, create a cost allocation tag that is named BusinessUnit. Also in each member account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure each S3 bucket as the destination for its respective AWS CUR. From the management account, query the AWS CUR data by using Amazon Athena. Use Amazon QuickSight for visualization.

Questions 160

A company is developing a gene reporting device that will collect genomic information to assist researchers with collecting large samples of data from a diverse population. The device will push 8 KB of genomic data every second to a data platform that will need to process and analyze the data and provide information back to researchers. The data platform must meet the following requirements:

•Provide near-real-time analytics of the inbound genomic data

•Ensure the data is flexible, parallel, and durable

•Deliver results of processing to a data warehouse

Which strategy should a solutions architect use to meet these requirements?

Options:
A.

Use Amazon Kinesis Data Firehose to collect the inbound sensor data, analyze the data with Kinesis clients, and save the results to an Amazon RDS instance.

B.

Use Amazon Kinesis Data Streams to collect the inbound sensor data, analyze the data with Kinesis clients, and save the results to an Amazon Redshift cluster using Amazon EMR.

C.

Use Amazon S3 to collect the inbound device data, analyze the data from Amazon SOS with Kinesis, and save the results to an Amazon Redshift cluster.

D.

Use an Amazon API Gateway to put requests into an Amazon SQS queue, analyze the data with an AWS Lambda function, and save the results to an Amazon Redshift cluster using Amazon EMR.

Questions 161

A company has an asynchronous HTTP application that is hosted as an AWS Lambda function. A public Amazon API Gateway endpoint invokes the Lambda function. The Lambda function and the API Gateway endpoint reside in the us-east-1 Region. A solutions architect needs to redesign the application to support failover to another AWS Region.

Which solution will meet these requirements?

Options:
A.

Create an API Gateway endpoint in the us-west-2 Region to direct traffic to the Lambda function in us-east-1. Configure Amazon Route 53 to use a failover routing policy to route traffic for the two API Gateway endpoints.

B.

Create an Amazon Simple Queue Service (Amazon SQS) queue. Configure API Gateway to direct traffic to the SQS queue instead of to the Lambda function. Configure the Lambda function to pull messages from the queue for processing.

C.

Deploy the Lambda function to the us-west-2 Region. Create an API Gateway endpoint in us-west-2 to direct traffic to the Lambda function in us-west-2. Configure AWS Global Accelerator and an Application Load Balancer to manage traffic across the two API Gateway endpoints.

D.

Deploy the Lambda function and an API Gateway endpoint to the us-west-2 Region. Configure Amazon Route 53 to use a failover routing policy to route traffic for the two API Gateway endpoints.

Questions 162

A VPC spans three Availability Zones, each with public and private subnets. One NAT gateway and one internet gateway exist. Private EC2 instances must connect to the internet.

Options:
A.

Add two more NAT gateways (one per AZ). Configure each private subnet to use its AZ’s NAT gateway.

B.

Add two more NAT gateways and configure public subnets.

C.

Add internet gateways per AZ and route private subnets.

D.

Add internet gateways per AZ and configure public subnets.

Questions 163

A company has an on-premises monitoring solution using a PostgreSQL database for persistence of events. The database is unable to scale due to heavy ingestion and it frequently runs out of storage.

The company wants to create a hybrid solution and has already set up a VPN connection between its network and AWS. The solution should include the following attributes:

• Managed AWS services to minimize operational complexity

• A buffer that automatically scales to match the throughput of data and requires no on-going administration.

• A visualization toot to create dashboards to observe events in near-real time.

• Support for semi -structured JSON data and dynamic schemas.

Which combination of components will enabled© company to create a monitoring solution that will satisfy these requirements'' (Select TWO.)

Options:
A.

Use Amazon Kinesis Data Firehose to buffer events Create an AWS Lambda function 10 process and transform events

B.

Create an Amazon Kinesis data stream to buffer events Create an AWS Lambda function to process and transform evens

C.

Configure an Amazon Aurora PostgreSQL DB cluster to receive events Use Amazon Quick Sight to read from the database and create near-real-time visualizations and dashboards

D.

Configure Amazon Elasticsearch Service (Amazon ES) to receive events Use the Kibana endpoint deployed with Amazon ES to create near-real-time visualizations and dashboards.

E.

Configure an Amazon Neptune 0 DB instance to receive events Use Amazon QuickSight to read from the database and create near-real-time visualizations and dashboards

Questions 164

A company is developing a web application that runs on Amazon EC2 instances in an Auto Scaling group behind a public-facing Application Load Balancer (ALB). Only users from a specific country are allowed to access the application. The company needs the ability to log the access requests that have been blocked. The solution should require the least possible maintenance.

Which solution meets these requirements?

Options:
A.

Create an IPSet containing a list of IP ranges that belong to the specified country. Create an AWS WAF web ACL. Configure a rule to block any requests that do not originate from an IP range in theIPSet. Associate the rule with the web ACL. Associate the web ACL with the ALB.

B.

Create an AWS WAF web ACL. Configure a rule to block any requests that do not originate from the specified country. Associate the rule with the web ACL. Associate the web ACL with the ALB.

C.

Configure AWS Shield to block any requests that do not originate from the specified country. Associate AWS Shield with the ALB.

D.

Create a security group rule that allows ports 80 and 443 from IP ranges that belong to the specified country. Associate the security group with the ALB.

Questions 165

A company has VPC flow logs enabled for its NAT gateway. The company is seeing Action = ACCEPT for inbound traffic that comes from public IP address

198.51.100.2 destined for a private Amazon EC2 instance.

A solutions architect must determine whether the traffic represents unsolicited inbound connections from the internet. The first two octets of the VPC CIDR block are 203.0.

Which set of steps should the solutions architect take to meet these requirements?

Options:
A.

Open the AWS CloudTrail console. Select the log group that contains the NAT gateway's elastic network interface and the private instance's elastic network interface. Run a query to filter with the destination address set as "like 203.0" and the source address set as "like 198.51.100.2". Run the stats command to filter the sum of bytes transferred by the source address and the destination address.

B.

Open the Amazon CloudWatch console. Select the log group that contains the NAT gateway's elastic network interface and the private instance's elastic network interface. Run a query to filter with the destination address set as "like 203.0" and the source address set as "like 198.51.100.2". Run the stats command to filter the sum of bytes transferred by the source address and the destination address.

C.

Open the AWS CloudTrail console. Select the log group that contains the NAT gateway's elastic network interface and the private instance's elastic network interface. Run a query to filter with the destination address set as "like 198.51.100.2" and the source address set as "like 203.0". Run the stats command to filter the sum of bytes transferred by the source address and the destination address.

D.

Open the Amazon CloudWatch console. Select the log group that contains the NAT gateway's elastic network interface and the private instance's elastic network interface. Run a query to filter with the destination address set as "like 198.51.100.2" and the source address set as "like 203.0". Run the stats command to filter the sum of bytes transferred by the source address and the destination address.