Summer Special 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bestdeal

Free Amazon Web Services SAP-C02 Practice Exam with Questions & Answers | Set: 6

Questions 76

A company needs to gather data from an experiment in a remote location that does not have internet connectivity. During the experiment, sensors that are connected to a total network will generate 6 TB of data in a preprimary formal over the course of 1 week. The sensors can be configured to upload their data files to an FTP server periodically, but the sensors do not have their own FTP server. The sensors also do not support other protocols. The company needs to collect the data centrally and move lie data to object storage in the AWS Cloud as soon. as possible after the experiment.

Which solution will meet these requirements?

Options:
A.

Order an AWS Snowball Edge Compute Optimized device. Connect the device to the local network. Configure AWS DataSync with a target bucket name, and unload the data over NFS to the device. After the experiment return the device to AWS so that the data can be loaded into Amazon S3.

B.

Order an AWS Snowcone device, including an Amazon Linux 2 AMI. Connect the device to the local network. Launch an Amazon EC2 instance on the device. Create a shell script that periodically downloads data from each sensor. After the experiment, return the device to AWS so that the data can be loaded as an Amazon Elastic Block Store [Amazon EBS) volume.

C.

Order an AWS Snowcone device, including an Amazon Linux 2 AMI. Connect the device to the local network. Launch an Amazon EC2 instance on the device. Install and configure an FTP server on the EC2 instance. Configure the sensors to upload data to the EC2 instance. After the experiment, return the device to AWS so that the data can be loaded into Amazon S3.

D.

Order an AWS Snowcone device. Connect the device to the local network. Configure the device to use Amazon FSx. Configure the sensors to upload data to the device. Configure AWS DataSync on the device to synchronize the uploaded data with an Amazon S3 bucket Return the device to AWS so that the data can be loaded as an Amazon Elastic Block Store (Amazon EBS) volume.

Amazon Web Services SAP-C02 Premium Access
Questions 77

A company is creating a sequel for a popular online game. A large number of users from all over the world will play the game within the first week after launch. Currently, the game consists of the following components deployed in a single AWS Region:

• Amazon S3 bucket that stores game assets

• Amazon DynamoDB table that stores player scores

A solutions architect needs to design a multi-Region solution that will reduce latency improve reliability, and require the least effort to implement

What should the solutions architect do to meet these requirements?

Options:
A.

Create an Amazon CloudFront distribution to serve assets from the S3 bucket Configure S3 Cross-Region Replication Create a new DynamoDB able in a new Region Use the new table as a replica target tor DynamoDB global tables.

B.

Create an Amazon CloudFront distribution to serve assets from the S3 bucket. Configure S3 Same-Region Replication. Create a new DynamoDB able m a new Region. Configure asynchronous replication between the DynamoDB tables by using AWS Database Migration Service (AWS DMS) with change data capture (CDC)

C.

Create another S3 bucket in a new Region and configure S3 Cross-Region Replication between the buckets Create an Amazon CloudFront distribution and configure origin failover with two origins accessing the S3 buckets in each Region. Configure DynamoDB global tables by enabling Amazon DynamoDB Streams, and add a replica table in a new Region.

D.

Create another S3 bucket in the same Region, and configure S3 Same-Region Replication between the buckets- Create an Amazon CloudFront distribution and configure origin failover with two origin accessing the S3 buckets Create a new DynamoDB table m a new Region Use the new table as a replica target for DynamoDB global tables.

Questions 78

An application is using an Amazon RDS for MySQL Multi-AZ DB instance in the us-east-1 Region. After a failover test, the application lost the connections to the database and could not re-establish the connections. After a restart of the application, the application re-established the connections.

A solutions architect must implement a solution so that the application can re-establish connections to the database without requiring a restart.

Which solution will meet these requirements?

Options:
A.

Create an Amazon Aurora MySQL Serverless v1 DB instance. Migrate the RDS DB instance to the Aurora Serverless v1 DB instance. Update the connection settings in the application to point to the Aurora reader endpoint.

B.

Create an RDS proxy. Configure the existing RDS endpoint as a target. Update the connection settings in the application to point to the RDS proxy endpoint.

C.

Create a two-node Amazon Aurora MySQL DB cluster. Migrate the RDS DB instance to the Aurora DB cluster. Create an RDS proxy. Configure the existing RDS endpoint as a target. Update the connection settings in the application to point to the RDS proxy endpoint.

D.

Create an Amazon S3 bucket. Export the database to Amazon S3 by using AWS Database Migration Service (AWS DMS). Configure Amazon Athena to use the S3 bucket as a data store. Install the latest Open Database Connectivity (ODBC) driver for the application. Update the connection settings in the application to point to the Athena endpoint

Questions 79

A company runs an unauthenticated static website (www.example.com) that includes a registration form for users. The website uses Amazon S3 for hosting and uses Amazon CloudFront as the content delivery network with AWS WAF configured. When the registration form is submitted, the website calls an Amazon API Gateway API endpoint that invokes an AWS Lambda function to process the payload and forward the payload to an external API call.

During testing, a solutions architect encounters a cross-origin resource sharing (CORS) error. The solutions architect confirms that the CloudFront distribution origin has the Access-Control-Allow-Origin header set towww.example.com.

What should the solutions architect do to resolve the error?

Options:
A.

Change the CORS configuration on the S3 bucket. Add rules for CORS to the Allowed Origin element forwww.example.com.

B.

Enable the CORS setting in AWS WAF. Create a web ACL rule in which the Access-Control-Allow-Origin header is set towww.example.com.

C.

Enable the CORS setting on the API Gateway API endpoint. Ensure that the API endpoint is configured to return all responses that have the Access-Control -Allow-Origin header set towww.example.com.

D.

Enable the CORS setting on the Lambda function. Ensure that the return code of the function has the Access-Control-Allow-Origin header set towww.example.com.

Questions 80

A company runs an ecommerce website on Amazon ECS behind an Application Load Balancer (ALB). The company stores the container images in Amazon ECR. The website stores data in an Amazon Aurora MySQL DB cluster. The company uses an Amazon S3 bucket to store backup data.

The company needs to prevent data tampering. The website domain is registered with Amazon Route 53. The company wants to recreate the setup in a second AWS Region with an RPO of 5 minutes and an RTO of 15 minutes. The company has created an ALB in the second Region.

Which solution will meet these requirements?

Options:
A.

Create a new ECS deployment that uses the Fargate launch type. Use the ECR repository in the current Region to store and pull container images. Set up a cross-Region read replica in Amazon RDS. Create a backup vault in compliance mode and a backup plan in AWS Backup. Set up a Route 53 primary record in the main Region and a secondary record with a multivalue answer routing policy.

B.

Create a new ECS deployment that uses the Fargate launch type. Use the ECR repository in the current Region to store and pull container images. Set up a cross-Region read replica in Amazon RDS. Set up a Route 53 primary record in the main Region and a secondary record with a failover routing policy.

C.

Set up ECR cross-Region replication. Create a new ECS deployment that uses the Fargate launch type. Migrate the DB cluster to an Aurora global database. Create a backup vault in compliance mode and a backup plan in AWS Backup. Enable point-in-time recovery and cross-Region replication for Amazon S3. Set up a Route 53 primary record in the main Region and a secondaryrecord with a failover routing policy.

D.

Set up ECR cross-Region replication. Create a new ECS deployment that uses the Fargate launch type. Migrate the DB cluster to an Aurora global database. Create a backup vault in governance mode and a backup plan in AWS Backup. Set up a Route 53 primary record in the main Region and a secondary record with a geolocation routing policy.

Questions 81

A company is running an application in the AWS Cloud. The application runs on containers in an Amazon Elastic Container Service (Amazon ECS) cluster. The ECS tasks use the Fargate launch type. The application's data is relational and is stored in Amazon Aurora MySQL. To meet regulatory requirements, the application must be able to recover to a separate AWS Region in the event of an application failure. In case of a failure, no data can be lost. Which solution will meet these requirements with the LEAST amount of operational overhead?

Options:
A.

Provision an Aurora Replica in a different Region.

B.

Set up AWS DataSync for continuous replication of the data to a different Region.

C.

Set up AWS Database Migration Service (AWS DMS) to perform a continuous replication of the data to a different Region.

D.

Use Amazon Data Lifecycle Manager {Amazon DLM) to schedule a snapshot every 5 minutes.

Questions 82

An online survey company runs its application in the AWS Cloud. The application is distributed and consists of microservices that run in an automatically scaled Amazon Elastic Container Service (Amazon ECS) cluster. The ECS cluster is a target for an Application Load Balancer (ALB). The ALB is a custom origin for an Amazon CloudFront distribution.

The company has a survey that contains sensitive data. The sensitive data must be encrypted when it moves through the application. The application's data-handling microservice is the only microservice that should be able to decrypt the data.

Which solution will meet these requirements?

Options:
A.

Create a symmetric AWS Key Management Service (AWS KMS) key that is dedicated to the data-handling microservice. Create a field-level encryption profile and a configuration. Associate the KMS key and the configuration with the CloudFront cache behavior.

B.

Create an RSA key pair that is dedicated to the data-handling microservice. Upload the public key to the CloudFront distribution. Create a field-level encryption profile and a configuration. Add the configuration to the CloudFront cache behavior.

C.

Create a symmetric AWS Key Management Service (AWS KMS) key that is dedicated to the data-handling microservice. Create a Lambda@Edge function. Program the function to use the KMS key to encrypt the sensitive data.

D.

Create an RSA key pair that is dedicated to the data-handling microservice. Create a Lambda@Edge function. Program the function to use the private key of the RSA key pair to encrypt the sensitive data.

Questions 83

A solutions architect needs to copy data from an Amazon S3 bucket m an AWS account to a new S3 bucket in a new AWS account. The solutions architect must implement a solution that uses the AWS CLI.

Which combination of steps will successfully copy the data? (Choose three.)

Options:
A.

Create a bucket policy to allow the source bucket to list its contents and to put objects and set object ACLs in the destination bucket. Attach the bucket policy to the destination bucket.

B.

Create a bucket policy to allow a user In the destination account to list the source bucket's contents and read the source bucket's objects. Attach the bucket policy to the source bucket.

C.

Create an IAM policy in the source account. Configure the policy to allow a user In the source account to list contents and get objects In the source bucket, and to list contents, put objects, and set object ACLs in the destination bucket. Attach the policy to the user _

D.

Create an IAM policy in the destination account. Configure the policy to allow a user In the destination account to list contents and get objects In the source bucket, and to list contents, put objects, and set objectACLs in the destination bucket. Attach the policy to the user.

E.

Run the aws s3 sync command as a user in the source account. Specify' the source and destination buckets to copy the data.

F.

Run the aws s3 sync command as a user in the destination account. Specify' the source and destination buckets to copy the data.

Questions 84

A company has an application that uses an on-premises Oracle database. The company is migrating the database to the AWS Cloud. The database contains customer data and stored procedures.

The company needs to migrate the database as quickly as possible with minimum downtime. The solution on AWS must provide high availability and must use managed services for the database.

Which solution will meet these requirements?

Options:
A.

Use AWS DMS to replicate data from the on-premises Oracle database to a new Amazon RDS for Oracle database. Transfer the database files to an Amazon S3 bucket. Configure the RDS database to use the S3 bucket as database storage. Set up S3 replication for high availability. Redirect the application to the RDS DB instance.

B.

Create a database backup of the on-premises Oracle database. Upload the backup to an Amazon S3 bucket. Shut down the on-premises Oracle database to avoid any new transactions. Restore the backup to a new Oracle cluster that consists of Amazon EC2 instances across two Availability Zones. Redirect the application to the EC2 instances.

C.

Use AWS DMS to replicate data from the on-premises Oracle database to a new Amazon DynamoDB table. Use DynamoDB Accelerator (DAX) and implement global tables for high availability. Rewrite the stored procedures in AWS Lambda. Run the stored procedures in DAX. After replication, redirect the application to the DAX cluster endpoint.

D.

Use AWS DMS to replicate data from the on-premises Oracle database to a new Amazon Aurora PostgreSQL database. Use AWS SCT to convert the schema and stored procedures. Redirect the application to the Aurora DB cluster.

Questions 85

A company is running a web application in a VPC. The web application runs on a group of Amazon EC2 instances behind an Application Load Balancer (ALB). The ALB is using AWS WAF.

An external customer needs to connect to the web application. The company must provide IP addresses to all external customers.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

Replace the ALB with a Network Load Balancer (NLB). Assign an Elastic IP address to the NLB.

B.

Allocate an Elastic IP address. Assign the Elastic IP address to the ALProvide the Elastic IP address to the customer.

C.

Create an AWS Global Accelerator standard accelerator. Specify the ALB as the accelerator's endpoint. Provide the accelerator's IP addresses to the customer.

D.

Configure an Amazon CloudFront distribution. Set the ALB as the origin. Ping the distribution's DNS name to determine the distribution's public IP address. Provide the IP address to the customer.

Questions 86

A company is subject to regulatory audits of its financial information. External auditors who use a single AWS account need access to the company's AWS account. A solutions architect must provide the auditors with secure, read-only access to the company's AWS account. The solution must comply with AWS security best practices.

Which solution will meet these requirements?

Options:
A.

In the company's AWS account, create resource policies for all resources in the account to grant access to the auditors' AWS account. Assign a unique external ID to the resource policy.

B.

In the company's AWS account create an IAM role that trusts the auditors' AWS account Create an IAM policy that has the required permissions. Attach the policy to the role. Assign a unique external ID to the role's trust policy.

C.

In the company's AWS account, create an IAM user. Attach the required IAM policies to the IAM user. Create API access keys for the IAM user. Share the access keys with the auditors.

D.

In the company's AWS account, create an IAM group that has the required permissions Create an IAM user in the company s account for each auditor. Add the IAM users to the IAM group.

Questions 87

A company is building a software-as-a-service (SaaS) solution on AWS. The company has deployed an Amazon API Gateway REST API with AWS Lambda integration in multiple AWS Regions and in the same production account.

The company offers tiered pricing that gives customers the ability to pay for the capacity to make a certain number of API calls per second. The premium tier offers up to 3,000 calls per second, and customers are identified by a unique API key. Several premium tier customers in various Regions report that they receive error responses of 429 Too Many Requests from multiple API methods during peak usage hours. Logs indicate that the Lambda function is never invoked.

What could be the cause of the error messages for these customers?

Options:
A.

The Lambda function reached its concurrency limit.

B.

The Lambda function its Region limit for concurrency.

C.

The company reached its API Gateway account limit for calls per second.

D.

The company reached its API Gateway default per-method limit for calls per second.

Questions 88

A company is running a compute workload by using Amazon EC2 Spot Instances that are in an Auto Scaling group. The launch template uses two placement groups and a single instance type.

Recently, a monitoring system reported Auto Scaling instance launch failures that correlated with longer wait times for system users. The company needs to improve the overall reliability of the workload.

Which solution will meet this requirement?

Options:
A.

Replace the launch template with a launch configuration to use an Auto Scaling group thatuses attribute-based instance type selection.

B.

Create a new launch template version that uses attribute-based instance type selection. Configure the Auto Scaling group to use the new launch template version.

C.

Update the launch template Auto Scaling group to increase the number of placement groups.

D.

Update the launch template to use a larger instance type.

Questions 89

A company has a new application that needs to run on five Amazon EC2 instances in a single AWS Region. The application requires high-through put. low-latency network connections between all to the EC2 instances where the application will run. There is no requirement for the application to be fault tolerant.

Which solution will meet these requirements?

Options:
A.

Launch five new EC2 instances into a cluster placement group. Ensure that the EC2instance type supports enhanced networking.

B.

Launch five new EC2 instances into an Auto Scaling group in the same Availability Zone. Attach an extra elastic network interface to each EC2 instance.

C.

Launch five new EC2 instances into a partition placement group. Ensure that the EC2 instance type supports enhanced networking.

D.

Launch five new EC2 instances into a spread placement group Attach an extra elastic network interface to each EC2 instance.

Questions 90

A health insurance company stores personally identifiable information (PII) in an Amazon S3 bucket. The company uses server-side encryption with S3 managed encryption keys (SSE-S3) to encrypt the objects. According to a new requirement, all current and future objects in the S3 bucket must be encrypted by keys that the company’s security team manages. The S3 bucket does not have versioning enabled.

Which solution will meet these requirements?

Options:
A.

In the S3 bucket properties, change the default encryption to SSE-S3 with a customer managed key. Use the AWS CLI to re-upload all objects in the S3 bucket. Set an S3 bucket policy to deny unencrypted PutObject requests.

B.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to deny unencrypted PutObject requests. Use the AWS CLI to re-upload all objects in the S3 bucket.

C.

In the S3 bucket properties, change the default encryption to server-side encryption with AWS KMS managed encryption keys (SSE-KMS). Set an S3 bucket policy to automatically encrypt objects on GetObject and PutObject requests.

D.

In the S3 bucket properties, change the default encryption to AES-256 with a customer managed key. Attach a policy to deny unencrypted PutObject requests to any entities that access the S3 bucket. Use the AWS CLI to re-upload all objects in the S3 bucket.