New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70track

Free Amazon Web Services SAP-C02 Practice Exam with Questions & Answers

Questions 1

A large company is running a popular web application. The application runs on several Amazon EC2 Linux Instances in an Auto Scaling group in a private subnet. An Application Load Balancer is targeting the Instances In the Auto Scaling group in the private subnet. AWS Systems Manager Session Manager Is configured, and AWS Systems Manager Agent is running on all the EC2 instances.

The company recently released a new version of the application Some EC2 instances are now being marked as unhealthy and are being terminated As a result, the application is running at reduced capacity A solutions architect tries to determine the root cause by analyzing Amazon CloudWatch logs that are collected from the application, but the logs are inconclusive

How should the solutions architect gain access to an EC2 instance to troubleshoot the issue1?

Options:
A.

Suspend the Auto Scaling group's HealthCheck scaling process. Use Session Manager to log in to an instance that is marked as unhealthy

B.

Enable EC2 instance termination protection Use Session Manager to log In to an instance that is marked as unhealthy.

C.

Set the termination policy to Oldestinstance on the Auto Scaling group. Use Session Manager to log in to an instance that is marked as unhealthy

D.

Suspend the Auto Scaling group's Terminate process. Use Session Manager to log in to an instance that is marked as unhealthy

Amazon Web Services SAP-C02 Premium Access
Questions 2

A company's inventory application stores data in an Amazon Aurora PostgreSQL DB cluster in a single AWS Region. The company wants to improve resiliency by extending the database infrastructure to a secondary Region. The company wants an RTO of 15 minutes and an RPO of 5 minutes. The solution must not run Aurora DB instances in the secondary Region when the application is operational in the primary Region. Which solution meets these requirements?

Options:
A.

Configure AWS DMS to copy the Aurora DB cluster in the primary Region to the secondary Region. Use AWS DMS to synchronize the primary DB cluster with the secondary DB cluster.

B.

Create a new Aurora PostgreSQL DB cluster in the secondary Region. Use AWS Backup to synchronize the primary DB cluster with the secondary DB cluster.

C.

Create a headless Aurora DB cluster in the second Region that is part of the same global DB cluster as the primary Region's DB cluster.

D.

Create an AWS Backup job to back up the DB cluster and copy the DB cluster to the secondary Region every 5 minutes.

Questions 3

A company wants to design a disaster recovery (DR) solution for an application that runs in the company's data center. The application writes to an SMB file share and creates a copy on a second file share. Both file shares are in the data center. The application uses two types of files: metadata files and image files.

The company wants to store the copy on AWS. The company needs the ability to use SMB to access the data from either the data center or AWS if a disaster occurs. The copy of the data is rarely accessed but must be available within 5 minutes.

Which solution will meet these requirements MOST cost-effectively?

Options:
A.

Deploy AWS Outposts with Amazon S3 storage. Configure a Windows Amazon EC2 instance on Outposts as a file server.

B.

Deploy an Amazon FSx File Gateway. Configure an Amazon FSx for Windows File Server Multi-AZ file system that uses SSD storage.

C.

Deploy an Amazon S3 File Gateway. Configure the S3 File Gateway to use Amazon S3 Standard-Infrequent Access (S3 Standard-IA) for the metadata files and to use S3 Glacier Deep Archive for the image files.

D.

Deploy an Amazon S3 File Gateway. Configure the S3 File Gateway to use Amazon S3 Standard-Infrequent Access (S3 Standard-IA) for the metadata files and image files.

Questions 4

A company is migrating its on-premises file transfer solution to AWS Transfer Family. The on-premises host includes an SFTP server to receive files, an application that performs a transformation of the files, and a messaging server. The transformations run every 5 minutes. When a transformation is complete, the application sends a message to a queue on the messaging server. The company needs to simplify the solution and reduce the management of the components. What should the company do to meet these requirements with the LEAST operational overhead?

Options:
A.

Configure Transfer Family to use Amazon EFS storage. Use a cron job on Amazon EFS to perform the transformations. Configure the cron job to publish a message to an Amazon SNS topic when a file has been transformed.

B.

Configure Transfer Family to use Amazon S3 storage. Use Amazon EMR to perform the transformations. Configure Amazon EMR to send a message to an Amazon SNS topic when a file has been transformed.

C.

Configure Transfer Family to use Amazon S3 storage. Use AWS Glue to perform the transformations after S3 event notifications. Configure AWS Glue to send a message to an Amazon SQS queue when a file has been transformed.

D.

Configure Transfer Family to use Amazon EFS storage. Create an AWS Glue time-based job to run every 5 minutes to initiate an AWS Glue transformation. Configure AWS Glue to send a message to an Amazon SQS queue when a file has been transformed.

Questions 5

A company is developing a solution to analyze images. The solution uses a 50 TB reference dataset and analyzes images up to 1 TB in size. The solution spreads requests across an Auto Scaling group of Amazon EC2 Linux instances in a VPC. The EC2 instances are attached to shared Amazon EBS io2 volumes in each Availability Zone. The EBS volumes store the reference dataset.

During testing, multiple parallel analyses led to numerous disk errors, which caused job failures. The company wants the solution to provide seamless data reading for all instances.

Which solution will meet these requirements MOST cost-effectively?

Options:
A.

Create a new EBS volume for each EC2 instance. Copy the data from the shared volume to the new EBS volume regularly. Update the application to reference the new EBS volume.

B.

Move all the reference data to an Amazon S3 bucket. Install Mountpoint for Amazon S3 on the EC2 instances. Create gateway endpoints for Amazon S3 in the VPC. Replace the EBS mount point with the S3 mount point.

C.

Move all the reference data to an Amazon S3 bucket. Create an Amazon S3 backed Multi-AZ Amazon EFS volume. Mount the EFS volume on the EC2 instances. Replace the EBS mount point with the EFS mount point.

D.

Upgrade the instances to local storage. Copy the data from the shared EBS volume to the local storage regularly. Update the application to reference the local storage.

Questions 6

A company has separate AWS accounts for each of its departments. The accounts are in OUs that are in an organization in AWS Organizations. The IT department manages a private certificate authority (CA) by using AWS Private Certificate Authority in its account.

The company needs a solution to allow developer teams in the other departmental accounts to access the private CA to issue certificates for their applications. The solution must maintain appropriate security boundaries between accounts.

Which solution will meet these requirements?

Options:
A.

Create an AWS Lambda function in the IT account. Program the Lambda function to use the AWS Private CA API to export and import a private CA certificate to each department account. Use Amazon EventBridge to invoke the Lambda function on a schedule.

B.

Create an IAM identity-based policy that allows cross-account access to AWS Private CA. In the IT account, attach this policy to the private CA. Grant access to AWS Private CA by using the AWS Private CA API.

C.

In the organization's management account, create an AWS CloudFormation stack to set up a resource-based delegation policy.

D.

Use AWS Resource Access Manager (AWS RAM) in the IT account to enable sharing in the organization. Create a resource share. Add the private CA resource to the resource share. Grant the department OUs access to the shared CA.

Questions 7

A financial services company receives a regular data feed from its credit card servicing partner Approximately 5.000 records are sent every 15 minutes in plaintext, delivered over HTTPS directly into an Amazon S3 bucket with server-side encryption. This feed contains sensitive credit card primary account number (PAN) data The company needs to automatically mask the PAN before sending the data to another S3 bucket for additional internal processing. The company also needs to remove and merge specific fields, and then transform the record into JSON format Additionally, extra feeds are likely to be added in the future, so any design needs to be easily expandable.

Which solutions will meet these requirements?

Options:
A.

Trigger an AWS Lambda function on file delivery that extracts each record and writes it to an Amazon SQS queue. Trigger another Lambda function when new messages arrive in the SQS queue to process the records, writing the results to a temporary location in Amazon S3. Trigger a final Lambda function once the SQS queue is empty to transform the records into JSON format and send the results to another S3 bucket for internal processing.

B.

Trigger an AWS Lambda function on file delivery that extracts each record and writes it to an Amazon SQS queue. Configure an AWS Fargate container application to automatically scale to a single instance when the SQS queue contains messages. Have the application process each record, and transform the record into JSON format. When the queue is empty, send the results to another S3bucket for internal processing and scale down the AWS Fargate i

C.

Create an AWS Glue crawler and custom classifier based on the data feed formats and build a table definition to match. Trigger an AWS Lambda function on file delivery to start an AWS Glue ETL job to transform the entire record according to the processing and transformation requirements. Define the output format as JSON. Once complete, have the ETL job send the results to another S3 bucket for internal processing.

D.

Create an AWS Glue crawler and custom classifier based upon the data feed formats and build a table definition to match. Perform an Amazon Athena query on file delivery to start an Amazon EMR ETL job to transform the entire record according to the processing and transformation requirements. Define the output format as JSON. Once complete, send the results to another S3 bucket for internal processing and scale down the EMR cluster.

Questions 8

Question:

A company is deploying a newbig data analytics clusteracross multiple Availability Zones. All nodes must haveread/write access to shared file storagethat ishighly available,POSIX-compatible, andhigh-throughput.

Options:
A.

Use AWS Storage Gateway (file gateway) backed by Amazon S3

B.

Use Amazon EFS in General Purpose performance mode

C.

Use Amazon EBS with Multi-Attach

D.

Use Amazon EFS with Max I/O performance mode

Questions 9

A company wants to manage the costs associated with a group of 20 applications that are infrequently used, but are still business-critical, by migrating to AWS. The applications are a mix of Java and Node.js spread across different instance clusters. The company wants to minimize costs while standardizing by using a single deployment methodology.

Most of the applications are part of month-end processing routines with a small number of concurrent users, but they are occasionally run at other times Average application memory consumption is less than 1 GB. though some applications use as much as 2.5 GB of memory during peak processing. The most important application in the group is a billing report written in Java that accesses multiple data sources and often runs for several hours.

Which is the MOST cost-effective solution?

Options:
A.

Deploy a separate AWS Lambda function tor each application. Use AWS CloudTrail logs and Amazon CloudWatch alarms to verify completion of critical jobs.

B.

Deploy Amazon ECS containers on Amazon EC2 with Auto Scaling configured for memory utilization of 75%. Deploy an ECS task for each application being migrated with ECS task scaling. Monitor services and hosts by using Amazon CloudWatch.

C.

Deploy AWS Elastic Beanstalk for each application with Auto Scaling to ensure that all requests have sufficient resources. Monitor each AWS Elastic Beanstalk deployment by using CloudWatch alarms.

D.

Deploy a new Amazon EC2 instance cluster that co-hosts all applications by using EC2 Auto Scaling and Application Load Balancers. Scale cluster size based on a custom metric set on instance memory utilization. Purchase 3-year Reserved Instance reservations equal to the GroupMaxSize parameter of the Auto Scaling group.

Questions 10

A financial company is planning to migrate its web application from on premises to AWS. The company uses a third-party security tool to monitor the inbound traffic to the application. The company has used the security tool for the last 15 years, and the tool has no cloud solutions available from its vendor. The company's security team is concerned about how to integrate the security tool with AWS technology.

The company plans to deploy the application migration to AWS on Amazon EC2 instances. The EC2 instances will run in an Auto Scaling group in a dedicated VPC. The company needs to use the security tool to inspect all packets that come in and out of the VPC. This inspection must occur in real time and must not affect the application's performance. A solutions architect must design a target architecture on AWS that is highly available within an AWS Region.

Which combination of steps should the solutions architect take to meet these requirements? (Select TWO.)

Options:
A.

Deploy the security tool on EC2 instances in a new Auto Scaling group in the existing VPC.

B.

Deploy the web application behind a Network Load Balancer.

C.

Deploy an Application Load Balancer in front of the security tool instances.

D.

Provision a Gateway Load Balancer for each Availability Zone to redirect the traffic to the security tool.

E.

Provision a transit gateway to facilitate communication between VPCs.

Questions 11

A company runs a Java application that has complex dependencies on VMs that are in the company's data center. The application is stable. but the company wants to modernize the technology stack. The company wants to migrate the application to AWS and minimize the administrative overhead to maintain the servers.

Which solution will meet these requirements with the LEAST code changes?

Options:
A.

Migrate the application to Amazon Elastic Container Service (Amazon ECS) on AWS Fargate by using AWS App2Container. Store container images in Amazon Elastic Container Registry (Amazon ECR). Grant the ECS task execution role permission 10 access the ECR image repository. Configure Amazon ECS to use an Application Load Balancer (ALB). Use the ALB to interact with the application.

B.

Migrate the application code to a container that runs in AWS Lambda. Build an Amazon API Gateway REST API with Lambda integration. Use API Gateway to interact with the application.

C.

Migrate the application to Amazon Elastic Kubernetes Service (Amazon EKS) on EKS managed node groups by using AWS App2Container. Store container images in Amazon Elastic Container Registry (Amazon ECR). Give the EKS nodes permission to access the ECR image repository. Use Amazon API Gateway to interact with the application.

D.

Migrate the application code to a container that runs in AWS Lambda. Configure Lambda to use an Application Load Balancer (ALB). Use the ALB to interact with the application.

Questions 12

A company recently completed the migration from an on-premises data center to the AWS Cloud by using a replatforming strategy. One of the migrated servers is running a legacy Simple Mail Transfer Protocol (SMTP) service that a critical application relies upon. The application sends outbound email messages to the company’s customers. The legacy SMTP server does not support TLS encryption and uses TCP port 25. The application can use SMTP only.

The company decides to use Amazon Simple Email Service (Amazon SES) and to decommission the legacy SMTP server. The company has created and validated the SES domain. The company has lifted the SES limits.

What should the company do to modify the application to send email messages from Amazon SES?

Options:
A.

Configure the application to connect to Amazon SES by using TLS Wrapper. Create an IAM role that has ses:SendEmail and ses:SendRawEmail permissions. Attach the IAM role to an Amazon EC2 instance.

B.

Configure the application to connect to Amazon SES by using STARTTLS. Obtain Amazon SES SMTP credentials. Use the credentials to authenticate with Amazon SES.

C.

Configure the application to use the SES API to send email messages. Create an IAM role that has ses:SendEmail and ses:SendRawEmail permissions. Use the IAM role as a service role for Amazon SES.

D.

Configure the application to use AWS SDKs to send email messages. Create an IAM user for Amazon SES. Generate API access keys. Use the access keys to authenticate with Amazon SES.

Questions 13

A publishing company's design team updates the icons and other static assets that an ecommerce web application uses. The company serves the icons and assets from an Amazon S3 bucket that is hosted in the company's production account. The company also uses a development account that members of the design team canaccess.

After the design team tests the static assets in the development account, the design team needs to load the assets into the S3 bucket in the production account. A solutions architect must provide the design team with access to the production account without exposing other parts of the web application to the risk of unwanted changes.

Which combination of steps will meet these requirements? (Select THREE.)

Options:
A.

In the production account, create a new IAM policy that allows read and write access to the S3 bucket.

B.

In the development account, create a new IAM policy that allows read and write access to the S3 bucket.

C.

In the production account, create a role. Attach the new policy to the role. Define the development account as a trusted entity.

D.

In the development account, create a role. Attach the new policy to the role. Define the production account as a trusted entity.

E.

In the development account, create a group that contains all the IAM users of the design team. Attach a different IAM policy to the group to allow the sts:AssumeRole action on the role in the production account.

F.

In the development account, create a group that contains all tfje IAM users of the design team. Attach a different IAM policy to the group to allow the sts;AssumeRole action on the role in the development account.

Questions 14

A retail company needs to provide a series of data files to another company, which is its business partner These files are saved in an Amazon S3 bucket under Account A. which belongs to the retail company. The business partner company wants one of its 1AM users. User_DataProcessor. to access the files from its own AWS account (Account B).

Which combination of steps must the companies take so that User_DataProcessor can access the S3 bucket successfully? (Select TWO.)

Options:
A.

Turn on the cross-origin resource sharing (CORS) feature for the S3 bucket in Account

B.

In Account A. set the S3 bucket policy to the following:

C.

C. In Account A. set the S3 bucket policy to the following:

D.

D. In Account B. set the permissions of User_DataProcessor to the following:

E.

E. In Account Bt set the permissions of User_DataProcessor to the following:

Questions 15

A company hosts a metadata API on Amazon EC2 instances behind an internet-facing Application Load Balancer (ALB). Only internal applications that run on EC2 instances in separate AWS accounts need to access the metadata API. All the internal EC2 instances use NAT gateways.

A new policy requires that traffic between internal applications must not travel across the public internet.

Which solution will meet this requirement?

Options:
A.

Create an HTTP API in Amazon API Gateway. Configure a route for the metadata API. Configure a VPC link to the VPC that hosts the metadata API's EC2 instances. Update the API Gateway resource policy to include the account IDs of the internal applications that access the metadata API.

B.

Create a REST API in Amazon API Gateway. Specify the API Gateway endpoint type as private. Associate the REST API with the metadata API's VPC. Create a gateway VPC endpoint for the REST API. Share the endpoint across accounts by using AWS Resource Access Manager (AWS RAM). Configure the internal applications to connect to the gateway VPC endpoint.

C.

Create an internal ALB. Register the metadata API's EC2 instances with the internal ALB. Create an internal Network Load Balancer (NLB) that has a target group type of ALB. Register the internal ALB as the target. Configure an AWS PrivateLink endpoint service for the NLB. Grant the internal applications access to the metadata API through the PrivateLink endpoint.

D.

Create an internal ALB. Register the metadata API's EC2 instances with the internal ALB. Configure an AWS PrivateLink endpoint service for the internal ALB. Grant the internal applications access to the metadata API through the PrivateLink endpoint.