New Year Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70track

Free Amazon Web Services SAP-C02 Practice Exam with Questions & Answers | Set: 10

Questions 136

A company has a legacy application that runs on multiple .NET Framework components. The components share the same Microsoft SQL Server database and

communicate with each other asynchronously by using Microsoft Message Queueing (MSMQ).

The company is starting a migration to containerized .NET Core components and wants to refactor the application to run on AWS. The .NET Core components require complex orchestration. The company must have full control over networking and host configuration. The application's database model is strongly relational.

Which solution will meet these requirements?

Options:
A.

Host the .NET Core components on AWS App Runner. Host the database on Amazon RDS for SQL Server. Use Amazon EventBridge for asynchronous messaging.

B.

Host the .NET Core components on Amazon Elastic Container Service (Amazon ECS) with the AWS Fargate launch type. Host the database on Amazon DynamoDB. Use Amazon Simple Notification Service (Amazon SNS) for asynchronous messaging.

C.

Host the .NET Core components on AWS Elastic Beanstalk. Host the database on Amazon Aurora PostgreSQL Serverless v2. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) for asynchronous messaging.

D.

Host the .NET Core components on Amazon Elastic Container Service (Amazon ECS) with the Amazon EC2 launch type. Host the database on Amazon Aurora MySQL Serverless v2. Use Amazon Simple Queue Service (Amazon SQS) for asynchronous messaging.

Amazon Web Services SAP-C02 Premium Access
Questions 137

Question:

How should EC2 instances in AWS synchronize their clocks with an on-premisesatomic clock NTP server, with theleast administrative overhead?

Options:
A.

Configure a DHCP options set with the on-prem NTP server.

B.

Use a custom AMI with Amazon Time Sync.

C.

Deploy a 3rd-party NTP server from Marketplace.

D.

Create an IPsec VPN tunnel to sync over Direct Connect.

Questions 138

A company is deploying a new application on AWS. The application consists of an Amazon EKS cluster and an Amazon ECR repository. The EKS cluster has an AWS managed node group.

The company's security guidelines state that all resources on AWS must be continuously scanned for security vulnerabilities.

Which solution will meet this requirement with the LEAST operational overhead?

Options:
A.

Activate AWS Security Hub. Configure Security Hub to scan the EKS nodes and the ECR repository.

B.

Activate Amazon Inspector to scan the EKS nodes and the ECR repository.

C.

Launch a new Amazon EC2 instance and install a vulnerability scanning tool from AWS Marketplace. Configure the EC2 instance to scan the EKS nodes. Configure Amazon ECR to perform a basic scan on push.

D.

Install the Amazon CloudWatch agent on the EKS nodes. Configure the CloudWatch agent to scan continuously. Configure Amazon ECR to perform a basic scan on push.

Questions 139

A company has built a high performance computing (HPC) cluster in AWS tor a tightly coupled workload that generates a large number of shared files stored in Amazon EFS. The cluster was performing well when the number of Amazon EC2 instances in the cluster was 100. However, when the company increased the cluster size to 1,000 EC2 instances, overall performance was well below expectations.

Which collection of design choices should a solutions architect make to achieve the maximum performance from the HPC cluster? (Select THREE.)

Options:
A.

Ensure the HPC cluster Is launched within a single Availability Zone.

B.

Launch the EC2 instances and attach elastic network interfaces in multiples of four.

C.

Select EC2 Instance types with an Elastic Fabric Adapter (EFA) enabled.

D.

Ensure the cluster Is launched across multiple Availability Zones.

E.

Replace Amazon EFS with multiple Amazon EBS volumes in a RAID array.

F.

Replace Amazon EFS with Amazon FSx for Lustre.

Questions 140

A company used Amazon EC2 instances to deploy a web fleet to host a blog site The EC2 instances are behind an Application Load Balancer (ALB) and are configured in an Auto ScaSng group The web application stores all blog content on an Amazon EFS volume.

The company recently added a feature 'or Moggers to add video to their posts, attracting 10 times the previous user traffic At peak times of day. users report buffering and timeout issues while attempting to reach the site or watch videos

Which is the MOST cost-efficient and scalable deployment that win resolve the issues for users?

Options:
A.

Reconfigure Amazon EFS to enable maximum I/O.

B.

Update the Nog site to use instance store volumes tor storage. Copy the site contents to the volumes at launch and to Amazon S3 al shutdown.

C.

Configure an Amazon CloudFront distribution. Point the distribution to an S3 bucket, and migrate the videos from EFS to Amazon S3.

D.

Set up an Amazon CloudFront distribution for all site contents, and point the distribution at the ALB.

Questions 141

A company is changing the way that it handles patching of Amazon EC2 instances in its application account. The company currently patches instances over the internet by using a NAT gateway in a VPC in the application account. The company has EC2 instances set up as a patch source repository in a dedicated private VPC in a core account. The company wants to use AWS Systems Manager Patch Manager and the patch source repository in the core account to patch the EC2 instances in the application account. The company must prevent all EC2 instances in the application account from accessing the internet. The EC2 instances in the application account need to access Amazon S3, where the application data is stored. These EC2 instances need connectivity to Systems Manager and to the patch source repository in the private VPC in the core account. Which solution will meet these requirements?

Options:
A.

Create a network ACL that blocks outbound traffic on port 80. Associate the network ACL with all subnets in the application account. In the application account and the core account, deploy one EC2 instance that runs a custom VPN server. Create a VPN tunnel to access the private VPC. Update the route table in the application account.

B.

Create private VIFs for Systems Manager and Amazon S3. Delete the NAT gateway from the VPC in the application account. Create a transit gateway to access the patch source repository EC2 instances in the core account. Update the route table in the core account.

C.

Create VPC endpoints for Systems Manager and Amazon S3. Delete the NAT gateway from the VPC in the application account. Create a VPC peering connection to access the patch source repository EC2 instances in the core account. Update the route tables in both accounts.

D.

Create a network ACL that blocks inbound traffic on port 80. Associate the network ACL with all subnets in the application account. Create a transit gateway to access the patch source repository EC2 instances in the core account. Update the route tables in both accounts.

Questions 142

A company has an application that stores user-uploaded videos in an Amazon S3 bucket that uses S3 Standard storage. Users access the videos frequently in the first 180 days after the videos are uploaded. Access after 180 days is rare. Named users and anonymous users access the videos. Most of the videos are more than 100 MB in size. Users often have poor internet connectivity when they upload videos, resulting in failed uploads. The company uses multipart uploads for the videos. A solutions architect needs to optimize the S3 costs of the application. Which combination of actions will meet these requirements? (Select TWO.)

Options:
A.

Configure the S3 bucket to be a Requester Pays bucket.

B.

Use S3 Transfer Acceleration to upload the videos to the S3 bucket.

C.

Create an S3 Lifecycle configuration to expire incomplete multipart uploads 7 days after initiation.

D.

Create an S3 Lifecycle configuration to transition objects to S3 Glacier Instant Retrieval after 1 day.

E.

Create an S3 Lifecycle configuration to transition objects to S3 Standard-Infrequent Access (S3 Standard-IA) after 180 days.

Questions 143

A company is running several workloads in a single AWS account. A new company policy states that engineers can provision only approved resources and that engineers must use AWS CloudFormation to provision these resources. A solutions architect needs to create a solution to enforce the new restriction on the IAM role that the engineers use for access.

What should the solutions architect do to create the solution?

Options:
A.

Upload AWS CloudFormation templates that contain approved resources to an Amazon S3 bucket. Update the IAM policy for the engineers' IAM role to only allow access to Amazon S3 and AWS CloudFormation. Use AWS CloudFormation templates to provision resources.

B.

Update the IAM policy for the engineers' IAM role with permissions to only allow provisioning of approved resources and AWS CloudFormation. Use AWS CloudFormation templates to create stacks with approved resources.

C.

Update the IAM policy for the engineers' IAM role with permissions to only allow AWS CloudFormation actions. Create a new IAM policy with permission to provision approved resources, and assign the policy to a new IAM service role. Assign the IAM service role to AWS CloudFormation during stack creation.

D.

Provision resources in AWS CloudFormation stacks. Update the IAM policy for the engineers' IAM role to only allow access to their own AWS CloudFormation stack.

Questions 144

A company runs an loT application in the AWS Cloud. The company has millions of sensors that collect data from houses in the United States. The sensors use the MOTT protocol to connect and send data to a custom MQTT broker. The MQTT broker stores the data on a single Amazon EC2 instance. The sensors connect to the broker through the domain named iot.example.com. The company uses Amazon Route 53 as its DNS service. The company stores the data in Amazon DynamoDB.

On several occasions, the amount of data has overloaded the MOTT broker and has resulted in lost sensor data. The company must improve the reliability of the solution.

Which solution will meet these requirements?

Options:
A.

Create an Application Load Balancer (ALB) and an Auto Scaling group for the MOTT broker. Use the Auto Scaling group as the target for the ALB. Update the DNS record in Route 53 to an alias record. Point the alias record to the ALB. Use the MQTT broker to store the data.

B.

Set up AWS loT Core to receive the sensor data. Create and configure a custom domain to connect to AWS loT Core. Update the DNS record in Route 53 to point to the AWS loT Core Data-ATS endpoint. Configure an AWS loT rule to store the data.

C.

Create a Network Load Balancer (NLB). Set the MQTT broker as the target. Create an AWS Global Accelerator accelerator. Set the NLB as the endpoint for the accelerator. Update the DNS record in Route 53 to a multivalue answer record. Set the Global Accelerator IP addresses as values. Use the MQTT broker to store the data.

D.

Set up AWS loT Greengrass to receive the sensor data. Update the DNS record in Route 53 to point to the AWS loT Greengrass endpoint. Configure an AWS loT rule to invoke an AWS Lambda function to store the data.

Questions 145

A telecommunications company is running an application on AWS. The company has set up an AWS Direct Connect connection between the company's on-premises data center and AWS. The company deployed the application on Amazon EC2 instances in multiple Availability Zones behind an internal Application Load Balancer (ALB). The company's clients connect from the on-premises network by using HTTPS. The TLS terminates in the ALB. The company has multiple target groups and uses path-based routing to forward requests based on the URL path.

The company is planning to deploy an on-premises firewall appliance with an allow list that is based on IP address. A solutions architect must develop a solution to allow traffic flow to AWS from the on-premises network so that the clients can continue to access the application.

Which solution will meet these requirements?

Options:
A.

Configure the existing ALB to use static IP addresses. Assign IP addresses in multiple Availability Zones to the ALB. Add the ALB IP addresses to the firewall appliance.

B.

Create a Network Load Balancer (NLB). Associate the NLB with one static IP addresses in multiple Availability Zones. Create an ALB-type target group for the NLB and add the existing ALAdd the NLB IP addresses to the firewall appliance. Update the clients to connect to the NLB.

C.

Create a Network Load Balancer (NLB). Associate the LNB with one static IP addresses in multiple Availability Zones. Add the existing target groups to the NLB. Update the clients to connect to the NLB. Delete the ALB Add the NLB IP addresses to the firewall appliance.

D.

Create a Gateway Load Balancer (GWLB). Assign static IP addresses to the GWLB in multiple Availability Zones. Create an ALB-type target group for the GWLB and add the existing ALB. Add the GWLB IP addresses to the firewall appliance. Update the clients to connect to the GWLB.

Questions 146

A company has deployed its database on an Amazon RDS for MySQL DB instance in the us-east-1 Region. The company needs to make its data available to customers in Europe. The customers in Europe must have access to the same data as customers in the United States (US) and will not tolerate high application latency or stale data. The customers in Europe and the customers in the USneed to write to the database. Both groups of customers need to see updates from the other group in real time.

Which solution will meet these requirements?

Options:
A.

Create an Amazon Aurora MySQL replica of the RDS for MySQL DB instance. Pause application writes to the RDS DB instance. Promote the Aurora Replica to a standalone DB cluster. Reconfigure the application to use the Aurora database and resume writes. Add eu-west-1 as a secondary Region to the 06 cluster. Enable write forwarding on the DB cluster. Deploy the application in eu-west-1. Configure the application to use the Aurora MySQL endpoint

B.

Add a cross-Region replica in eu-west-1 for the RDS for MySQL DB instance. Configure the replica to replicate write queries back to the primary DB instance. Deploy the application in eu-west-1. Configure the application to use the RDS for MySQL endpoint in eu-west-1.

C.

Copy the most recent snapshot from the RDS for MySQL DB instance to eu-west-1. Create a new RDS for MySQL DB instance in eu-west-1 from the snapshot. Configure MySQL logical replication from us-east-1 to eu-west-1. Enable write forwarding on the DB cluster. Deploy the application in eu-west-1. Configure the application to use the RDS for MySQL endpoint in eu-west-1.

D.

Convert the RDS for MySQL DB instance to an Amazon Aurora MySQL DB cluster. Add eu-west-1 as a secondary Region to the DB cluster. Enable write forwarding on the DB cluster. Deploy the application in eu-west-1. Configure the application to use the Aurora MySQL endpoint in eu-west-1.

Questions 147

A company has a website that runs on four Amazon EC2 instances that are behind an Application Load Balancer (ALB). When the ALB detects that an EC2 instance is no longer available, an Amazon CloudWatch alarm enters the ALARM state. A member of the company's operations team then manually adds a new EC2 instance behind the ALB.

A solutions architect needs to design a highly available solution that automatically handles the replacement of EC2 instances. The company needs to minimize downtime during the switch to the new solution.

Which set of steps should the solutions architect take to meet these requirements?

Options:
A.

Delete the existing ALB. Create an Auto Scaling group that is configured to handle the web application traffic. Attach a new launch template to the Auto Scaling group. Create a new ALB. Attach the Auto Scaling group to the new ALB. Attach the existing EC2 instances to the Auto Scaling group.

B.

Create an Auto Scaling group that is configured to handle the web application traffic. Attach a new launch template to the Auto Scaling group. Attach the Auto Scaling group to the existing ALB. Attach the existing EC2 instances to the Auto Scaling group.

C.

Delete the existing ALB and the EC2 instances. Create an Auto Scaling group that is configuredto handle the web application traffic. Attach a new launch template to the Auto Scaling group. Create a new ALB. Attach the Auto Scaling group to the new ALB. Wait for the Auto Scaling group to launch the minimum number of EC2 instances.

D.

Create an Auto Scaling group that is configured to handle the web application traffic. Attach a new launch template to the Auto Scaling group. Attach the Auto Scaling group to the existing ALB. Wait for the existing ALB to register the existing EC2 instances with the Auto Scaling group.

Questions 148

A company is developing a new on-demand video application that is based on microservices. The application will have 5 million users at launch and will have 30 million users after 6 months. The company has deployed the application on Amazon Elastic Container Service (Amazon ECS) on AWS Fargate. The company developed the application by using ECS services that use the HTTPS protocol.

A solutions architect needs to implement updates to the application by using blue/green deployments. The solution must distribute traffic to each ECS service through a load balancer. The application must automatically adjust the number of tasks in response to an Amazon CloudWatch alarm.

Which solution will meet these requirements?

Options:
A.

Configure the ECS services to use the blue/green deployment type and a Network Load Balancer. Request increases to the service quota for tasks per service to meet the demand.

B.

Configure the ECS services to use the blue/green deployment type and a Network Load Balancer. Implement an Auto Scaling group for each ECS service by using the Cluster Autoscaler.

C.

Configure the ECS services to use the blue/green deployment type and an Application Load Balancer. Implement an Auto Seating group for each ECS service by using the Cluster Autoscaler.

D.

Configure the ECS services to use the blue/green deployment type and an Application Load Balancer. Implement Service Auto Scaling for each ECS service.

Questions 149

A company is migrating to AWS and needs to inventory physical and virtual servers, apps, and database relationships to properly rightsize and plan migration.

Options:
A.

Use Migration Evaluator with Agentless Collector.

B.

Use Migration Hub with Discovery Agent and Strategy Recommendations.

C.

Use Migration Hub with Agentless Collector and Migration Service.

D.

Use Migration Hub import tool.

Questions 150

A company is planning to migrate workloads from its on-premises data center to Amazon EC2 instances. The workloads run on physical servers and VMware virtual servers. The company has gathered details about each on-premises server and virtual server, including server specification, CPU utilization, and memory utilization. The company has stored these details in a .csv file named onprem.csv.

Before the migration, the company must estimate the cost of running the servers on AWS and must determine recommended EC2 instance types for the servers. The company must export this information to a different .csv file.

Which solution will meet these requirements?

Options:
A.

Configure AWS Compute Optimizer to generate recommendations from an external source. Import the onprem.csv file. Export the Compute Optimizer recommendations to a new .csv file.

B.

Import the onprem.csv file into AWS Migration Hub by using AWS Migration Hub import. Use EC2 instance recommendations from Migration Hub to generate recommendations. Export the recommendations to a new .csv file.

C.

Deploy AWS Application Discovery Service Agentless Collector on premises. Use Agentless Collector to import the onprem.csv file. Send the file to AWS Migration Hub. Use EC2 instance recommendations from Migration Hub to generate recommendations. Export the recommendations to a new .csv file.

D.

Upload the onprem.csv file to an Amazon S3 bucket. Configure Migration Evaluator to import the data from the S3 bucket. Generate and confirm recommendations by using Migration Evaluator Quick Insights. Export the final recommendations to a new .csv file in the S3 bucket.