Summer Special 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bestdeal

Free Amazon Web Services ANS-C01 Practice Exam with Questions & Answers | Set: 4

Questions 31

A company has two AWS Direct Connect connections between Direct Connect locations and the company's on-premises environment in the US. The company uses the connections to communicate with AWS workloads that run in the us-east-1 Region. Thecompany has a transit gateway that connects several VPCs. The Direct Connect connections terminate at a Direct Connect gateway and the transit VIFs to the transit gateway.

The company recently acquired a smaller company that is based in Europe. The newly acquired company has only on-premises workloads. The newly acquired company does not

expect to run workloads on AWS for the next 3 years. However, the newly acquired company requires connectivity to the parent company's AWS resources in us-east-1 and to the

parent company's on-premises environment in the US. The parent company wants to use two new Direct Connect connections in Europe to provide the required connectivity.

Which solution will meet these requirements with the LEAST operational overhead for the newly acquired company?

Options:
A.

Associate new transit VIFs to the existing Direct Connect gateway. Configure the new transit VIFs to use Direct Connect SiteLink.

B.

Associate new transit VIFs to a new Direct Connect gateway and to a new transit gateway in the eu-west-1 Region. Use transit gateway peering to connect the transit gateways.

C.

Associate new private VIFs to the existing Direct Connect gateway. Configure the existing transit VIFs and the new private VIFs to use Direct Connect SiteLink.

D.

Associate new private VIFs to a new Direct Connect gateway and to a new VPC in us-east-1. Configure the existing transit VIFs and the new private VIFs to use Direct Connect SiteLink and AWS PrivateLink endpoints in the new VPC.

Amazon Web Services ANS-C01 Premium Access
Questions 32

A network engineer is designing a hybrid architecture that uses a 1 Gbps AWS Direct Connect connection between the company's data center and two AWS Regions: us-east-1 and eu-west-1. The VPCs in us-east-1 are connected by a transit gateway and need to access several on-premises databases. According to company policy, only one VPC in eu-west-1 can be connected to one on-premises server. The on-premises network segments the traffic between the databases and theserver.

How should the network engineer set up the Direct Connect connection to meet these requirements?

Options:
A.

Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct. Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

B.

Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

C.

Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

D.

Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

Questions 33

A company deploys a software solution on Amazon EC2 instances that are in a clusterplacement group. The solution's UI is a single HTML page. The HTML file size is 1,024 bytes. The software processes files that exceed 1,024 MB in size. The software shares files over the network to clients upon request. The files are shared with the Don't Fragment flag set. Elastic network interfaces of the EC2 instances are set up with jumbo frames.

The UI is always accessible from all allowed source IP addresses, regardless of whether the source IP addresses are within a VPC, on the internet, or on premises. However, clients sometimes do not receive files that they request because the files fail to travel successfully from the software to the clients.

Which options provide a possible root cause of these failures? (Choose two.)

Options:
A.

The source IP addresses are from on-premises hosts that are routed over AWS Direct Connect.

B.

The source IP addresses are from on-premises hosts that are routed over AWS Site-to-Site VPN.

C.

The source IP addresses are from hosts that connect over the public internet.

D.

The security group of the EC2 instances does not allow ICMP traffic.

E.

The operating system of the EC2 instances does not support jumbo frames.

Questions 34

A company has workloads that run in a VPC. The workloads access Amazon S3 by using an S3 gateway endpoint. The company also has on-premises workloads that need to access Amazon

S3 privately over a VPN connection. The company has established the VPN connection to the VPC.

Which solution will provide connectivity to Amazon S3 from the VPC workloads and the on-premises workloads in the MOST operationally efficient way?

Options:
A.

Deploy a proxy fleet of Amazon EC2 instances in the VPC behind an Application Load Balancer (ALB). Configure the on-premises workloads to use the ALB as the proxy server to connect to Amazon S3. Configure the proxy fleet to use the S3 gateway endpoint to connect to Amazon S3.

B.

Delete the S3 gateway endpoint. Create an S3 interface endpoint. Deploy a proxy fleet of Amazon EC2 instances in the VPC behind an Application Load Balancer (ALB).

Configure the on-premises workloads to use the ALB as the proxy server to connect to Amazon S3. Configure the proxy fleet and the VPC workloads to use the S3 interface

endpoint to connect to Amazon S3.

C.

Create an S3 interface endpoint. Configure an on-premises DNS resolver to resolve the S3 DNS names to the private IP addresses of the S3 interface endpoint. Use the S3

interface endpoint to access Amazon S3. Continue to use the S3 gateway endpoint for the VPC workloads to access Amazon S3.

D.

Set up an AWS Direct Connect connection. Create a public VIF. Configure on-premises routing to route the S3 traffic over the public VIF. Make no changes to the on-premises

workloads. Continue to use the S3 gateway endpoint for the VPC workloads to access Amazon S3.

Questions 35

A company has a single VPC in the us-east-1 Region. The company is planning to set up a new VPC in the us-east-2 Region. The existing VPC has an AWS Site-to-Site VPN connection to the company's on-premises environment and uses a virtual private gateway.

A network engineer needs to implement a solution to establish connectivity between the existing VPC and the new VPC. The solution also must implement support for IPv6 for the new VPC. The company has new on-premises resources that need to connect to VPC resources by using IPv6 addresses.

Which solution will meet these requirements?

Options:
A.

Create a new virtual private gateway in us-east-1. Attach the new virtual private gateway to the new VPC. Create two new Site-to-Site VPN connections to the new virtual private gateway with IPv4 and IPv6 support. Configure routing between the VPCs by using VPC peering.

B.

Create a transit gateway in us-east-1 and in us-east-2. Attach the existing VPC and the new VPC to each transit gateway. Create a new Site-to-Site VPN connection to each transit gateway with IPv4 and IPv6 support. Configure transit gateway peering. Configure routing between the VPCs and the on-premises environment.

C.

Create a new virtual private gateway in us-east-2. Attach the new virtual private gateway to the new VPC. Create two new Site-to-Site VPN connections to the new virtual private gateway with IPv4 and IPv6 support. Configure routing between the VPCs by using VPC peering.

D.

Create a transit gateway in us-east-1. Attach the existing VPC and the new VPC to the transit gateway. Create two new Site-to-Site VPN connections to the transit gateway with IPv4 and IPv6 support. Configure transit gateway peering. Configure routing between the VPCs and the on-premises environment.

Questions 36

Two companies are merging. The companies have a large AWS presence with multiple VPCs and are designing connectivity between their AWS networks. Both companies are using AWS Direct Connect with a Direct Connect gateway. Each company also has a transit gateway and multiple AWS Site-to-Site VPN connections from its transit gateway to on-premises resources. The new solution must optimize network visibility, throughput, logging, and monitoring.

Which solution will meet these requirements?

Options:
A.

Configure a Site-to-Site VPN connection between each company's transit gateway to establish reachability between the respective networks. Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use VPC Reachability Analyzer to monitor connectivity.

B.

Configure a Site-to-Site VPN connection between each company's transit gateway to establish reachability between the respective networks. Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use AWS Transit Gateway Network Manager to monitor the transit gateways and their respective connections.

C.

Configure transit gateway peering between each company's transit gateway Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use VPC Reachability Analyzer to monitor connectivity.

D.

Configure transit gateway peering between each company's transit gateway. Configure VPC Flow Logs for all VPCs. Publish the flow logs to Amazon CloudWatch. Use AWS Transit Gateway Network Manager to monitor the transit gateways, their respective connections, and the transit gateway peering link.

Questions 37

A company has an AWS account with four VPCs in the us-east-1 Region. The VPCs consist of a development VPC and three production VPCs that host various workloads.

The company has extended its on-premises data center to AWS with AWS Direct Connect by using a Direct Connect gateway. The company now wants to establish connectivity to its production VPCs and development VPC from on premises. The production VPCs are allowed to route data to each other. However, the development VPC must be isolated from the production VPCs. No data can flow between the development VPC and the production VPCs.

In preparation to implement this solution, a network engineer creates a transit gateway with a single transit gateway route table. Default route table association and default route table propagation are turned off. The network engineer attaches the production VPCs. the development VPC. and the Direct Connect gateway to the transit gateway. For each VPC route table, the network engineer adds a route to 0.0.0.0/0 with the transit gateway as the next destination.

Which combination of steps should the network engineer take next to complete this solution? (Select THREE.)

Options:
A.

Associate the production VPC attachments with the existing transit gateway route table. Propagate the routes from these attachments.

B.

Associate all the attachments with the existing transit gateway route table. Propagate the routes from these attachments.

C.

Associate the Direct Connect gateway attachment with the existing transit gateway route table. Propagate the Direct Connect gateway attachment to this route table.

D.

Change the security group inbound rules on the existing transit gateway network interfaces in the development VPC to allow connections to and from the on-premises CIDR range only.

E.

Create a new transit gateway route table. Associate the new route table with the development VPC attachment. Propagate the Direct Connect gateway and developmentVPC attachment to the new route table.

F.

Create a new transit gateway with default route table association and default route table propagation turned on. Attach the Direct Connect gateway and development VPC to the new transit gateway.

Questions 38

A company uses transit gateways to route traffic between the company's VPCs. Each transit gateway has a single route table. Each route table contains attachments and routes for the VPCs that are in the same AWS Region as the transit gateway. The route tables in each VPC also contain routes to all the other VPC CIDR ranges that are available through the transit gateways. Some VPCs route to local NAT gateways.

The company plans to add many new VPCs soon. A network engineer needs a solution to add new VPC CIDR ranges to the route tables in each VPC.

Which solution will meet these requirements in the MOST operationally efficient way?

Options:
A.

Create a new customer-managed prefix list. Add all VPC CIDR ranges to the new prefix list. Update the route tables in each VPC to use the new prefix list ID as the destination and the appropriate transit gateway ID as the target.

B.

Turn on default route table propagation for the transit gateway route tables. Turn on route propagation for each route table in each VPC.

C.

Update the route tables in each VPC to use 0.0.0.010 as the destination and the appropriate transit gateway ID as the target.

D.

Turn on default route table association for the transit gateway route tables. Turn on route propagation for each route table in each VPC.

Questions 39

A company’s network engineer needs to design a new solution to help troubleshoot and detect network anomalies. The network engineer has configured Traffic Mirroring. However, the mirrored traffic is overwhelming the Amazon EC2 instance that is the traffic mirror target. The EC2 instancehosts tools that the company’s security team uses to analyze the traffic. The network engineer needs to design a highly available solution that can scale to meet the demand of the mirrored traffic.

Which solution will meet these requirements?

Options:
A.

Deploy a Network Load Balancer (NLB) as the traffic mirror target. Behind the NLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

B.

Deploy an Application Load Balancer (ALB) as the traffic mirror target. Behind the ALB, deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during non-business hours.

C.

Deploy a Gateway Load Balancer (GLB) as the traffic mirror target. Behind the GLB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring as necessary.

D.

Deploy an Application Load Balancer (ALB) with an HTTPS listener as the traffic mirror target. Behind the ALB. deploy a fleet of EC2 instances in an Auto Scaling group. Use Traffic Mirroring only during active events or business hours.

Questions 40

A company has deployed Amazon EC2 instances in private subnets in a VPC. The EC2 instances must initiate any requests that leave the VPC, including requests to the company's on-premises data center over an AWS Direct Connect connection. No resources outside the VPC can be allowed toopen communications directly to the EC2 instances.

The on-premises data center's customer gateway is configured with a stateful firewall device that filters for incoming and outgoing requests to and from multiple VPCs. In addition, the company wants to use a single IP match rule to allow all the communications from the EC2 instances to its data center from a single IP address.

Which solution will meet these requirements with the LEAST amount of operational overhead?

Options:
A.

Create a VPN connection over the Direct Connect connection by using the on-premises firewall. Use the firewall to block all traffic from on premises to AWS. Allow a stateful connection from the EC2 instances to initiate the requests.

B.

Configure the on-premises firewall to filter all requests from the on-premises network to the EC2 instances. Allow a stateful connection if the EC2 instances in the VPC initiate the traffic.

C.

Deploy a NAT gateway into a private subnet in the VPC where the EC2 instances are deployed. Specify the NAT gateway type as private. Configure the on-premises firewall to allow connections from the IP address that is assigned to the NAT gateway.

D.

Deploy a NAT instance into a private subnet in the VPC where the EC2 instances are deployed. Configure the on-premises firewall to allow connections from the IP address that is assigned to the NAT instance.