Summer Special 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bestdeal

Free Amazon Web Services MLS-C01 Practice Exam with Questions & Answers

Questions 1

A company is planning a marketing campaign to promote a new product to existing customers. The company has data (or past promotions that are similar. The company decides to try an experiment to send a more expensive marketing package to a smaller number of customers. The company wants to target the marketing campaign to customers who are most likely to buy the new product. The experiment requires that at least 90% of the customers who are likely to purchase the new product receive the marketing materials.

...company trains a model by using the linear learner algorithm in Amazon SageMaker. The model has a recall score of 80% and a precision of 75%.

...should the company retrain the model to meet these requirements?

Options:
A.

Set the target_recall hyperparameter to 90% Set the binaryclassrfier model_selection_critena hyperparameter to recall_at_target_precision.

B.

Set the targetprecision hyperparameter to 90%. Set the binary classifier model selection criteria hyperparameter to precision at_jarget recall.

C.

Use 90% of the historical data for training Set the number of epochs to 20.

D.

Set the normalize_jabel hyperparameter to true. Set the number of classes to 2.

Amazon Web Services MLS-C01 Premium Access
Questions 2

A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.

Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)

Options:
A.

Use Amazon SageMaker Ground Truth to sort the data into two groups named "enrolled" or "not enrolled."

B.

Use a forecasting algorithm to run predictions.

C.

Use a regression algorithm to run predictions.

D.

Use a classification algorithm to run predictions

E.

Use the built-in Amazon SageMaker k-means algorithm to cluster the data into two groups named "enrolled" or "not enrolled."

Questions 3

A Data Scientist needs to analyze employment data. The dataset contains approximately 10 million

observations on people across 10 different features. During the preliminary analysis, the Data Scientist notices

that income and age distributions are not normal. While income levels shows a right skew as expected, with fewer individuals having a higher income, the age distribution also show a right skew, with fewer older

individuals participating in the workforce.

Which feature transformations can the Data Scientist apply to fix the incorrectly skewed data? (Choose two.)

Options:
A.

Cross-validation

B.

Numerical value binning

C.

High-degree polynomial transformation

D.

Logarithmic transformation

E.

One hot encoding

Questions 4

A machine learning (ML) developer for an online retailer recently uploaded a sales dataset into Amazon SageMaker Studio. The ML developer wants to obtain importance scores for each feature of the dataset. The ML developer will use the importance scores to feature engineer the dataset.

Which solution will meet this requirement with the LEAST development effort?

Options:
A.

Use SageMaker Data Wrangler to perform a Gini importance score analysis.

B.

Use a SageMaker notebook instance to perform principal component analysis (PCA).

C.

Use a SageMaker notebook instance to perform a singular value decomposition analysis.

D.

Use the multicollinearity feature to perform a lasso feature selection to perform an importance scores analysis.

Questions 5

A financial services company wants to adopt Amazon SageMaker as its default data science environment. The company's data scientists run machine learning (ML) models on confidential financial data. The company is worried about data egress and wants an ML engineer to secure the environment.

Which mechanisms can the ML engineer use to control data egress from SageMaker? (Choose three.)

Options:
A.

Connect to SageMaker by using a VPC interface endpoint powered by AWS PrivateLink.

B.

Use SCPs to restrict access to SageMaker.

C.

Disable root access on the SageMaker notebook instances.

D.

Enable network isolation for training jobs and models.

E.

Restrict notebook presigned URLs to specific IPs used by the company.

F.

Protect data with encryption at rest and in transit. Use AWS Key Management Service (AWS KMS) to manage encryption keys.

Questions 6

A Machine Learning Specialist is working for an online retailer that wants to run analytics on every customer visit, processed through a machine learning pipeline. The data needs to be ingested by Amazon Kinesis Data Streams at up to 100 transactions per second, and the JSON data blob is 100 KB in size.

What is the MINIMUM number of shards in Kinesis Data Streams the Specialist should use to successfully ingest this data?

Options:
A.

1 shards

B.

10 shards

C.

100 shards

D.

1,000 shards

Questions 7

A data scientist has developed a machine learning translation model for English to Japanese by using Amazon SageMaker's built-in seq2seq algorithm with 500,000 aligned sentence pairs. While testing with sample sentences, the data scientist finds that the translation quality is reasonable for an example as short as five words. However, the quality becomes unacceptable if the sentence is 100 words long.

Which action will resolve the problem?

Options:
A.

Change preprocessing to use n-grams.

B.

Add more nodes to the recurrent neural network (RNN) than the largest sentence's word count.

C.

Adjust hyperparameters related to the attention mechanism.

D.

Choose a different weight initialization type.

Questions 8

A company needs to quickly make sense of a large amount of data and gain insight from it. The data is in different formats, the schemas change frequently, and new data sources are added regularly. The company wants to use AWS services to explore multiple data sources, suggest schemas, and enrich and transform the data. The solution should require the least possible coding effort for the data flows and the least possible infrastructure management.

Which combination of AWS services will meet these requirements?

Options:
A.

Amazon EMR for data discovery, enrichment, and transformationAmazon Athena for querying and analyzing the results in Amazon S3 using standard SQLAmazon QuickSight for reporting and getting insights

B.

Amazon Kinesis Data Analytics for data ingestionAmazon EMR for data discovery, enrichment, and transformationAmazon Redshift for querying and analyzing the results in Amazon S3

C.

AWS Glue for data discovery, enrichment, and transformationAmazon Athena for querying and analyzing the results in Amazon S3 using standard SQLAmazon QuickSight for reporting and getting insights

D.

AWS Data Pipeline for data transferAWS Step Functions for orchestrating AWS Lambda jobs for data discovery, enrichment, and transformationAmazon Athena for querying and analyzing the results in Amazon S3 using standard SQLAmazon QuickSight for reporting and getting insights

Questions 9

Given the following confusion matrix for a movie classification model, what is the true class frequency for Romance and the predicted class frequency for Adventure?

MLS-C01 Question 9

Options:
A.

The true class frequency for Romance is 77.56% and the predicted class frequency for Adventure is 20 85%

B.

The true class frequency for Romance is 57.92% and the predicted class frequency for Adventure is 1312%

C.

The true class frequency for Romance is 0 78 and the predicted class frequency for Adventure is (0 47 - 0.32).

D.

The true class frequency for Romance is 77.56% * 0.78 and the predicted class frequency for Adventure is 20 85% ' 0.32

Questions 10

A machine learning (ML) specialist is using Amazon SageMaker hyperparameter optimization (HPO) to improve a model’s accuracy. The learning rate parameter is specified in the following HPO configuration:

During the results analysis, the ML specialist determines that most of the training jobs had a learning rate between 0.01 and 0.1. The best result had a learning rate of less than 0.01. Training jobs need to run regularly over a changing dataset. The ML specialist needs to find a tuning mechanism that uses different learning rates more evenly from the provided range between MinValue and MaxValue.

Which solution provides the MOST accurate result?

Options:
A.

Modify the HPO configuration as follows:Select the most accurate hyperparameter configuration form this HPO job.

B.

Run three different HPO jobs that use different learning rates form the following intervals for MinValue and MaxValue while using the same number of training jobs for each HPO job:[0.01, 0.1][0.001, 0.01][0.0001, 0.001]Select the most accurate hyperparameter configuration form these three HPO jobs.

C.

Modify the HPO configuration as follows:Select the most accurate hyperparameter configuration form this training job.

D.

Run three different HPO jobs that use different learning rates form the following intervals for MinValue and MaxValue. Divide the number of training jobs for each HPO job by three:[0.01, 0.1][0.001, 0.01][0.0001, 0.001]Select the most accurate hyperparameter configuration form these three HPO jobs.