Summer Special 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bestdeal

Free Databricks Databricks-Generative-AI-Engineer-Associate Practice Exam with Questions & Answers | Set: 2

Questions 11

A Generative AI Engineer is testing a simple prompt template in LangChain using the code below, but is getting an error.

Databricks-Generative-AI-Engineer-Associate Question 11

Assuming the API key was properly defined, what change does the Generative AI Engineer need to make to fix their chain?

A)

Databricks-Generative-AI-Engineer-Associate Question 11

B)

Databricks-Generative-AI-Engineer-Associate Question 11

C)

Databricks-Generative-AI-Engineer-Associate Question 11

D)

Databricks-Generative-AI-Engineer-Associate Question 11

Options:
A.

Option A

B.

Option B

C.

Option C

D.

Option D

Databricks Databricks-Generative-AI-Engineer-Associate Premium Access
Questions 12

A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author’s web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user’s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.

Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)

Options:
A.

Change embedding models and compare performance.

B.

Add a classifier for user queries that predicts which book will best contain the answer. Use this to filter retrieval.

C.

Choose an appropriate evaluation metric (such as recall or NDCG) and experiment with changes in the chunking strategy, such as splitting chunks by paragraphs or chapters.

Choose the strategy that gives the best performance metric.

D.

Pass known questions and best answers to an LLM and instruct the LLM to provide the best token count. Use a summary statistic (mean, median, etc.) of the best token counts to choose chunk size.

E.

Create an LLM-as-a-judge metric to evaluate how well previous questions are answered by the most appropriate chunk. Optimize the chunking parameters based upon the values of the metric.

Questions 13

A Generative Al Engineer is tasked with improving the RAG quality by addressing its inflammatory outputs.

Which action would be most effective in mitigating the problem of offensive text outputs?

Options:
A.

Increase the frequency of upstream data updates

B.

Inform the user of the expected RAG behavior

C.

Restrict access to the data sources to a limited number of users

D.

Curate upstream data properly that includes manual review before it is fed into the RAG system

Questions 14

A Generative Al Engineer needs to design an LLM pipeline to conduct multi-stage reasoning that leverages external tools. To be effective at this, the LLM will need to plan and adapt actions while performing complex reasoning tasks.

Which approach will do this?

Options:
A.

Tram the LLM to generate a single, comprehensive response without interacting with any external tools, relying solely on its pre-trained knowledge.

B.

Implement a framework like ReAct which allows the LLM to generate reasoning traces and perform task-specific actions that leverage external tools if necessary.

C.

Encourage the LLM to make multiple API calls in sequence without planning or structuring the calls, allowing the LLM to decide when and how to use external tools spontaneously.

D.

Use a Chain-of-Thought (CoT) prompting technique to guide the LLM through a series of reasoning steps, then manually input the results from external tools for the final answer.

Questions 15

A Generative Al Engineer has successfully ingested unstructured documents and chunked them by document sections. They would like to store the chunks in a Vector Search index. The current format of the dataframe has two columns: (i) original document file name (ii) an array of text chunks for each document.

What is the most performant way to store this dataframe?

Options:
A.

Split the data into train and test set, create a unique identifier for each document, then save to a Delta table

B.

Flatten the dataframe to one chunk per row, create a unique identifier for each row, and save to a Delta table

C.

First create a unique identifier for each document, then save to a Delta table

D.

Store each chunk as an independent JSON file in Unity Catalog Volume. For each JSON file, the key is the document section name and the value is the array of text chunks for that section

Questions 16

A Generative AI Engineer is designing an LLM-powered live sports commentary platform. The platform provides real-time updates and LLM-generated analyses for any users who would like to have live summaries, rather than reading a series of potentially outdated news articles.

Which tool below will give the platform access to real-time data for generating game analyses based on the latest game scores?

Options:
A.

DatabrickslQ

B.

Foundation Model APIs

C.

Feature Serving

D.

AutoML

Questions 17

A Generative Al Engineer has built an LLM-based system that will automatically translate user text between two languages. They now want to benchmark multiple LLM's on this task and pick the best one. They have an evaluation set with known high quality translation examples. They want to evaluate each LLM using the evaluation set with a performant metric.

Which metric should they choose for this evaluation?

Options:
A.

ROUGE metric

B.

BLEU metric

C.

NDCG metric

D.

RECALL metric

Questions 18

A Generative Al Engineer is helping a cinema extend its website's chat bot to be able to respond to questions about specific showtimes for movies currently playing at their local theater. They already have the location of the user provided by location services to their agent, and a Delta table which is continually updated with the latest showtime information by location. They want to implement this new capability In their RAG application.

Which option will do this with the least effort and in the most performant way?

Options:
A.

Create a Feature Serving Endpoint from a FeatureSpec that references an online store synced from the Delta table. Query the Feature Serving Endpoint as part of the agent logic / tool implementation.

B.

Query the Delta table directly via a SQL query constructed from the user's input using a text-to-SQL LLM in the agent logic / tool

C.

implementation. Write the Delta table contents to a text column.then embed those texts using an embedding model and store these in the vector index Look

up the information based on the embedding as part of the agent logic / tool implementation.

D.

Set up a task in Databricks Workflows to write the information in the Delta table periodically to an external database such as MySQL and query the information from there as part of the agent logic / tool implementation.

Certification Provider: Databricks
Exam Name: Databricks Certified Generative AI Engineer Associate
Last Update: Jul 10, 2025
Questions: 61