Spring Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70track

Free Databricks Databricks-Generative-AI-Engineer-Associate Practice Exam with Questions & Answers | Set: 2

Questions 11

A Generative Al Engineer needs to design an LLM pipeline to conduct multi-stage reasoning that leverages external tools. To be effective at this, the LLM will need to plan and adapt actions while performing complex reasoning tasks.

Which approach will do this?

Options:
A.

Tram the LLM to generate a single, comprehensive response without interacting with any external tools, relying solely on its pre-trained knowledge.

B.

Implement a framework like ReAct which allows the LLM to generate reasoning traces and perform task-specific actions that leverage external tools if necessary.

C.

Encourage the LLM to make multiple API calls in sequence without planning or structuring the calls, allowing the LLM to decide when and how to use external tools spontaneously.

D.

Use a Chain-of-Thought (CoT) prompting technique to guide the LLM through a series of reasoning steps, then manually input the results from external tools for the final answer.

Databricks Databricks-Generative-AI-Engineer-Associate Premium Access
Questions 12

A Generative Al Engineer is using an LLM to classify species of edible mushrooms based on text descriptions of certain features. The model is returning accurate responses in testing and the Generative Al Engineer is confident they have the correct list of possible labels, but the output frequently contains additional reasoning in the answer when the Generative Al Engineer only wants to return the label with no additional text.

Which action should they take to elicit the desired behavior from this LLM?

Options:
A.

Use few snot prompting to instruct the model on expected output format

B.

Use zero shot prompting to instruct the model on expected output format

C.

Use zero shot chain-of-thought prompting to prevent a verbose output format

D.

Use a system prompt to instruct the model to be succinct in its answer

Questions 13

A Generative AI Engineer received the following business requirements for an external chatbot.

The chatbot needs to know what types of questions the user asks and routes to appropriate models to answer the questions. For example, the user might ask about upcoming event details. Another user might ask about purchasing tickets for a particular event.

What is an ideal workflow for such a chatbot?

Options:
A.

The chatbot should only look at previous event information

B.

There should be two different chatbots handling different types of user queries.

C.

The chatbot should be implemented as a multi-step LLM workflow. First, identify the type of question asked, then route the question to the appropriate model. If it’s an upcoming event question, send the query to a text-to-SQL model. If it’s about ticket purchasing, the customer should be redirected to a payment platform.

D.

The chatbot should only process payments

Questions 14

A Generative Al Engineer is responsible for developing a chatbot to enable their company’s internal HelpDesk Call Center team to more quickly find related tickets and provide resolution. While creating the GenAI application work breakdown tasks for this project, they realize they need to start planning which data sources (either Unity Catalog volume or Delta table) they could choose for this application. They have collected several candidate data sources for consideration:

call_rep_history: a Delta table with primary keys representative_id, call_id. This table is maintained to calculate representatives’ call resolution from fields call_duration and call start_time.

transcript Volume: a Unity Catalog Volume of all recordings as a *.wav files, but also a text transcript as *.txt files.

call_cust_history: a Delta table with primary keys customer_id, cal1_id. This table is maintained to calculate how much internal customers use the HelpDesk to make sure that the charge back model is consistent with actual service use.

call_detail: a Delta table that includes a snapshot of all call details updated hourly. It includes root_cause and resolution fields, but those fields may be empty for calls that are still active.

maintenance_schedule – a Delta table that includes a listing of both HelpDesk application outages as well as planned upcoming maintenance downtimes.

They need sources that could add context to best identify ticket root cause and resolution.

Which TWO sources do that? (Choose two.)

Options:
A.

call_cust_history

B.

maintenance_schedule

C.

call_rep_history

D.

call_detail

E.

transcript Volume

Questions 15

A Generative AI Engineer is developing an agent system using a popular agent-authoring library. The agent comprises multiple parallel and sequential chains. The engineer encounters challenges as the agent fails at one of the steps, making it difficult to debug the root cause. They need to find an appropriate approach to research this issue and discover the cause of failure. Which approach do they choose?

Options:
A.

Enable MLflow tracing to gain visibility into each agent's behavior and execution step.

B.

Run MLflow.evaluate to determine root cause of failed step.

C.

Implement structured logging within the agent's code to capture detailed execution information.

D.

Deconstruct the agent into independent steps to simplify debugging.

Questions 16

What is the most suitable library for building a multi-step LLM-based workflow?

Options:
A.

Pandas

B.

TensorFlow

C.

PySpark

D.

LangChain

Questions 17

A Generative AI Engineer wants to build an LLM-based solution to help a restaurant improve its online customer experience with bookings by automatically handling common customer inquiries. The goal of the solution is to minimize escalations to human intervention and phone calls while maintaining a personalized interaction. To design the solution, the Generative AI Engineer needs to define the input data to the LLM and the task it should perform.

Which input/output pair will support their goal?

Options:
A.

Input: Online chat logs; Output: Group the chat logs by users, followed by summarizing each user’s interactions

B.

Input: Online chat logs; Output: Buttons that represent choices for booking details

C.

Input: Customer reviews; Output: Classify review sentiment

D.

Input: Online chat logs; Output: Cancellation options

Questions 18

A Generative AI Engineer at an automotive company would like to build a question-answering chatbot to help customers answer specific questions about their vehicles. They have:

    A catalog with hundreds of thousands of cars manufactured since the 1960s

    Historical searches with user queries and successful matches

    Descriptions of their own cars in multiple languages

They have already selected an open-source LLM and created a test set of user queries. They need to discard techniques that will not help them build the chatbot. Which do they discard?

Options:
A.

Setting chunk size to match the model's context window to maximize coverage

B.

Implementing metadata filtering based on car models and years

C.

Fine-tuning an embedding model on automotive terminology

D.

Adding few-shot examples for response generation

Questions 19

A Generative AI Engineer is designing a RAG application for answering user questions on technical regulations as they learn a new sport.

What are the steps needed to build this RAG application and deploy it?

Options:
A.

Ingest documents from a source –> Index the documents and saves to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> Evaluate model –> LLM generates a response –> Deploy it using Model Serving

B.

Ingest documents from a source –> Index the documents and save to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> LLM generates a response -> Evaluate model –> Deploy it using Model Serving

C.

Ingest documents from a source –> Index the documents and save to Vector Search –> Evaluate model –> Deploy it using Model Serving

D.

User submits queries against an LLM –> Ingest documents from a source –> Index the documents and save to Vector Search –> LLM retrieves relevant documents –> LLM generates a response –> Evaluate model –> Deploy it using Model Serving

Questions 20

A Generative Al Engineer has created a RAG application to look up answers to questions about a series of fantasy novels that are being asked on the author’s web forum. The fantasy novel texts are chunked and embedded into a vector store with metadata (page number, chapter number, book title), retrieved with the user’s query, and provided to an LLM for response generation. The Generative AI Engineer used their intuition to pick the chunking strategy and associated configurations but now wants to more methodically choose the best values.

Which TWO strategies should the Generative AI Engineer take to optimize their chunking strategy and parameters? (Choose two.)

Options:
A.

Change embedding models and compare performance.

B.

Add a classifier for user queries that predicts which book will best contain the answer. Use this to filter retrieval.

C.

Choose an appropriate evaluation metric (such as recall or NDCG) and experiment with changes in the chunking strategy, such as splitting chunks by paragraphs or chapters.

Choose the strategy that gives the best performance metric.

D.

Pass known questions and best answers to an LLM and instruct the LLM to provide the best token count. Use a summary statistic (mean, median, etc.) of the best token counts to choose chunk size.

E.

Create an LLM-as-a-judge metric to evaluate how well previous questions are answered by the most appropriate chunk. Optimize the chunking parameters based upon the values of the metric.

Certification Provider: Databricks
Exam Name: Databricks Certified Generative AI Engineer Associate
Last Update: Feb 21, 2026
Questions: 73