Weekend Sale 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sale65best

Free Databricks Databricks-Generative-AI-Engineer-Associate Practice Exam with Questions & Answers

Questions 1

A Generative AI Engineer has been asked to design an LLM-based application that accomplishes the following business objective: answer employee HR questions using HR PDF documentation.

Which set of high level tasks should the Generative AI Engineer's system perform?

Options:
A.

Calculate averaged embeddings for each HR document, compare embeddings to user query to find the best document. Pass the best document with the user query into an LLM with a large context window to generate a response to the employee.

B.

Use an LLM to summarize HR documentation. Provide summaries of documentation and user query into an LLM with a large context window to generate a response to the user.

C.

Create an interaction matrix of historical employee questions and HR documentation. Use ALS to factorize the matrix and create embeddings. Calculate the embeddings of new queries and use them to find the best HR documentation. Use an LLM to generate a response to the employee question based upon the documentation retrieved.

D.

Split HR documentation into chunks and embed into a vector store. Use the employee question to retrieve best matched chunks of documentation, and use the LLM to generate a response to the employee based upon the documentation retrieved.

Databricks Databricks-Generative-AI-Engineer-Associate Premium Access
Questions 2

A Generative Al Engineer interfaces with an LLM with prompt/response behavior that has been trained on customer calls inquiring about product availability. The LLM is designed to output “In Stock” if the product is available or only the term “Out of Stock” if not.

Which prompt will work to allow the engineer to respond to call classification labels correctly?

Options:
A.

Respond with “In Stock” if the customer asks for a product.

B.

You will be given a customer call transcript where the customer asks about product availability. The outputs are either “In Stock” or “Out of Stock”. Format the output in JSON, for example: {“call_id”: “123”, “label”: “In Stock”}.

C.

Respond with “Out of Stock” if the customer asks for a product.

D.

You will be given a customer call transcript where the customer inquires about product availability. Respond with “In Stock” if the product is available or “Out of Stock” if not.

Questions 3

A Generative Al Engineer would like an LLM to generate formatted JSON from emails. This will require parsing and extracting the following information: order ID, date, and sender email. Here’s a sample email:

Databricks-Generative-AI-Engineer-Associate Question 3

They will need to write a prompt that will extract the relevant information in JSON format with the highest level of output accuracy.

Which prompt will do that?

Options:
A.

You will receive customer emails and need to extract date, sender email, and order ID. You should return the date, sender email, and order ID information in JSON format.

B.

You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in JSON format.

Here’s an example: {“date”: “April 16, 2024”, “sender_email”: “sarah.lee925@gmail.com”, “order_id”: “RE987D”}

C.

You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in a human-readable format.

D.

You will receive customer emails and need to extract date, sender email, and order ID. Return the extracted information in JSON format.

Questions 4

A Generative Al Engineer is setting up a Databricks Vector Search that will lookup news articles by topic within 10 days of the date specified An example query might be "Tell me about monster truck news around January 5th 1992". They want to do this with the least amount of effort.

How can they set up their Vector Search index to support this use case?

Options:
A.

Split articles by 10 day blocks and return the block closest to the query.

B.

Include metadata columns for article date and topic to support metadata filtering.

C.

pass the query directly to the vector search index and return the best articles.

D.

Create separate indexes by topic and add a classifier model to appropriately pick the best index.

Questions 5

A Generative AI Engineer is designing a RAG application for answering user questions on technical regulations as they learn a new sport.

What are the steps needed to build this RAG application and deploy it?

Options:
A.

Ingest documents from a source –> Index the documents and saves to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> Evaluate model –> LLM generates a response –> Deploy it using Model Serving

B.

Ingest documents from a source –> Index the documents and save to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> LLM generates a response -> Evaluate model –> Deploy it using Model Serving

C.

Ingest documents from a source –> Index the documents and save to Vector Search –> Evaluate model –> Deploy it using Model Serving

D.

User submits queries against an LLM –> Ingest documents from a source –> Index the documents and save to Vector Search –> LLM retrieves relevant documents –> LLM generates a response –> Evaluate model –> Deploy it using Model Serving

Questions 6

A Generative Al Engineer is ready to deploy an LLM application written using Foundation Model APIs. They want to follow security best practices for production scenarios

Which authentication method should they choose?

Options:
A.

Use an access token belonging to service principals

B.

Use a frequently rotated access token belonging to either a workspace user or a service principal

C.

Use OAuth machine-to-machine authentication

D.

Use an access token belonging to any workspace user

Questions 7

A Generative Al Engineer is using an LLM to classify species of edible mushrooms based on text descriptions of certain features. The model is returning accurate responses in testing and the Generative Al Engineer is confident they have the correct list of possible labels, but the output frequently contains additional reasoning in the answer when the Generative Al Engineer only wants to return the label with no additional text.

Which action should they take to elicit the desired behavior from this LLM?

Options:
A.

Use few snot prompting to instruct the model on expected output format

B.

Use zero shot prompting to instruct the model on expected output format

C.

Use zero shot chain-of-thought prompting to prevent a verbose output format

D.

Use a system prompt to instruct the model to be succinct in its answer

Questions 8

A Generative AI Engineer has been asked to build an LLM-based question-answering application. The application should take into account new documents that are frequently published. The engineer wants to build this application with the least cost and least development effort and have it operate at the lowest cost possible.

Which combination of chaining components and configuration meets these requirements?

Options:
A.

For the application a prompt, a retriever, and an LLM are required. The retriever output is inserted into the prompt which is given to the LLM to generate answers.

B.

The LLM needs to be frequently with the new documents in order to provide most up-to-date answers.

C.

For the question-answering application, prompt engineering and an LLM are required to generate answers.

D.

For the application a prompt, an agent and a fine-tuned LLM are required. The agent is used by the LLM to retrieve relevant content that is inserted into the prompt which is given to the LLM to generate answers.

Questions 9

A Generative Al Engineer is working with a retail company that wants to enhance its customer experience by automatically handling common customer inquiries. They are working on an LLM-powered Al solution that should improve response times while maintaining a personalized interaction. They want to define the appropriate input and LLM task to do this.

Which input/output pair will do this?

Options:
A.

Input: Customer reviews; Output Group the reviews by users and aggregate per-user average rating, then respond

B.

Input: Customer service chat logs; Output Group the chat logs by users, followed by summarizing each user's interactions, then respond

C.

Input: Customer service chat logs; Output: Find the answers to similar questions and respond with a summary

D.

Input: Customer reviews: Output Classify review sentiment

Questions 10

A Generative AI Engineer wants to build an LLM-based solution to help a restaurant improve its online customer experience with bookings by automatically handling common customer inquiries. The goal of the solution is to minimize escalations to human intervention and phone calls while maintaining a personalized interaction. To design the solution, the Generative AI Engineer needs to define the input data to the LLM and the task it should perform.

Which input/output pair will support their goal?

Options:
A.

Input: Online chat logs; Output: Group the chat logs by users, followed by summarizing each user’s interactions

B.

Input: Online chat logs; Output: Buttons that represent choices for booking details

C.

Input: Customer reviews; Output: Classify review sentiment

D.

Input: Online chat logs; Output: Cancellation options

Certification Provider: Databricks
Exam Name: Databricks Certified Generative AI Engineer Associate
Last Update: Jul 19, 2025
Questions: 61