Spring Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70track

Free Databricks Databricks-Generative-AI-Engineer-Associate Practice Exam with Questions & Answers

Questions 1

A Generative Al Engineer is creating an LLM-based application. The documents for its retriever have been chunked to a maximum of 512 tokens each. The Generative Al Engineer knows that cost and latency are more important than quality for this application. They have several context length levels to choose from.

Which will fulfill their need?

Options:
A.

context length 514; smallest model is 0.44GB and embedding dimension 768

B.

context length 2048: smallest model is 11GB and embedding dimension 2560

C.

context length 32768: smallest model is 14GB and embedding dimension 4096

D.

context length 512: smallest model is 0.13GB and embedding dimension 384

Databricks Databricks-Generative-AI-Engineer-Associate Premium Access
Questions 2

A Generative AI Engineer is building an LLM to generate article summaries in the form of a type of poem, such as a haiku, given the article content. However, the initial output from the LLM does not match the desired tone or style.

Which approach will NOT improve the LLM’s response to achieve the desired response?

Options:
A.

Provide the LLM with a prompt that explicitly instructs it to generate text in the desired tone and style

B.

Use a neutralizer to normalize the tone and style of the underlying documents

C.

Include few-shot examples in the prompt to the LLM

D.

Fine-tune the LLM on a dataset of desired tone and style

Questions 3

Which indicator should be considered to evaluate the safety of the LLM outputs when qualitatively assessing LLM responses for a translation use case?

Options:
A.

The ability to generate responses in code

B.

The similarity to the previous language

C.

The latency of the response and the length of text generated

D.

The accuracy and relevance of the responses

Questions 4

A Generative Al Engineer is building a system that will answer questions on currently unfolding news topics. As such, it pulls information from a variety of sources including articles and social media posts. They are concerned about toxic posts on social media causing toxic outputs from their system.

Which guardrail will limit toxic outputs?

Options:
A.

Use only approved social media and news accounts to prevent unexpected toxic data from getting to the LLM.

B.

Implement rate limiting

C.

Reduce the amount of context Items the system will Include in consideration for its response.

D.

Log all LLM system responses and perform a batch toxicity analysis monthly.

Questions 5

A Generative Al Engineer is helping a cinema extend its website's chat bot to be able to respond to questions about specific showtimes for movies currently playing at their local theater. They already have the location of the user provided by location services to their agent, and a Delta table which is continually updated with the latest showtime information by location. They want to implement this new capability In their RAG application.

Which option will do this with the least effort and in the most performant way?

Options:
A.

Create a Feature Serving Endpoint from a FeatureSpec that references an online store synced from the Delta table. Query the Feature Serving Endpoint as part of the agent logic / tool implementation.

B.

Query the Delta table directly via a SQL query constructed from the user's input using a text-to-SQL LLM in the agent logic / tool

C.

implementation. Write the Delta table contents to a text column.then embed those texts using an embedding model and store these in the vector index Look

up the information based on the embedding as part of the agent logic / tool implementation.

D.

Set up a task in Databricks Workflows to write the information in the Delta table periodically to an external database such as MySQL and query the information from there as part of the agent logic / tool implementation.

Questions 6

A Generative AI Engineer is developing a patient-facing healthcare-focused chatbot. If the patient’s question is not a medical emergency, the chatbot should solicit more information from the patient to pass to the doctor’s office and suggest a few relevant pre-approved medical articles for reading. If the patient’s question is urgent, direct the patient to calling their local emergency services.

Given the following user input:

“I have been experiencing severe headaches and dizziness for the past two days.”

Which response is most appropriate for the chatbot to generate?

Options:
A.

Here are a few relevant articles for your browsing. Let me know if you have questions after reading them.

B.

Please call your local emergency services.

C.

Headaches can be tough. Hope you feel better soon!

D.

Please provide your age, recent activities, and any other symptoms you have noticed along with your headaches and dizziness.

Questions 7

When developing an LLM application, it’s crucial to ensure that the data used for training the model complies with licensing requirements to avoid legal risks.

Which action is NOT appropriate to avoid legal risks?

Options:
A.

Reach out to the data curators directly before you have started using the trained model to let them know.

B.

Use any available data you personally created which is completely original and you can decide what license to use.

C.

Only use data explicitly labeled with an open license and ensure the license terms are followed.

D.

Reach out to the data curators directly after you have started using the trained model to let them know.

Questions 8

A Generative Al Engineer is working with a retail company that wants to enhance its customer experience by automatically handling common customer inquiries. They are working on an LLM-powered Al solution that should improve response times while maintaining a personalized interaction. They want to define the appropriate input and LLM task to do this.

Which input/output pair will do this?

Options:
A.

Input: Customer reviews; Output Group the reviews by users and aggregate per-user average rating, then respond

B.

Input: Customer service chat logs; Output Group the chat logs by users, followed by summarizing each user's interactions, then respond

C.

Input: Customer service chat logs; Output: Find the answers to similar questions and respond with a summary

D.

Input: Customer reviews: Output Classify review sentiment

Questions 9

A Generative AI Engineer is developing a chatbot designed to assist users with insurance-related queries. The chatbot is built on a large language model (LLM) and is conversational. However, to maintain the chatbot’s focus and to comply with company policy, it must not provide responses to questions about politics. Instead, when presented with political inquiries, the chatbot should respond with a standard message:

“Sorry, I cannot answer that. I am a chatbot that can only answer questions around insurance.”

Which framework type should be implemented to solve this?

Options:
A.

Safety Guardrail

B.

Security Guardrail

C.

Contextual Guardrail

D.

Compliance Guardrail

Questions 10

A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.

Which change could the Generative Al Engineer perform to mitigate this issue?

Options:
A.

Split the LLM output by newline characters to truncate away the summarization explanation.

B.

Tune the chunk size of news articles or experiment with different embedding models.

C.

Revisit their document ingestion logic, ensuring that the news articles are being ingested properly.

D.

Provide few shot examples of desired output format to the system and/or user prompt.

Certification Provider: Databricks
Exam Name: Databricks Certified Generative AI Engineer Associate
Last Update: Feb 21, 2026
Questions: 73