A retail chain has been ingesting purchasing records from its network of 20,000 stores to Amazon S3 using Amazon Kinesis Data Firehose To support training an improved machine learning model, training records will require new but simple transformations, and some attributes will be combined The model needs lo be retrained daily
Given the large number of stores and the legacy data ingestion, which change will require the LEAST amount of development effort?
A company has video feeds and images of a subway train station. The company wants to create a deep learning model that will alert the station manager if any passenger crosses the yellow safety line when there is no train in the station. The alert will be based on the video feeds. The company wants the model to detect the yellow line, the passengers who cross the yellow line, and the trains in the video feeds. This task requires labeling. The video data must remain confidential.
A data scientist creates a bounding box to label the sample data and uses an object detection model. However, the object detection model cannot clearly demarcate the yellow line, the passengers who cross the yellow line, and the trains.
Which labeling approach will help the company improve this model?
A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.
Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.
Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)
A Machine Learning Specialist has completed a proof of concept for a company using a small data sample and now the Specialist is ready to implement an end-to-end solution in AWS using Amazon SageMaker The historical training data is stored in Amazon RDS
Which approach should the Specialist use for training a model using that data?
While working on a neural network project, a Machine Learning Specialist discovers thai some features in the data have very high magnitude resulting in this data being weighted more in the cost function What should the Specialist do to ensure better convergence during backpropagation?
A company is building a demand forecasting model based on machine learning (ML). In the development stage, an ML specialist uses an Amazon SageMaker notebook to perform feature engineering during work hours that consumes low amounts of CPU and memory resources. A data engineer uses the same notebook to perform data preprocessing once a day on average that requires very high memory and completes in only 2 hours. The data preprocessing is not configured to use GPU. All the processes are running well on an ml.m5.4xlarge notebook instance.
The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.
Which solution will result in the MOST cost savings?
A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable
What should be done to reduce the impact of having such a large number of features?
A company wants to create a data repository in the AWS Cloud for machine learning (ML) projects. The company wants to use AWS to perform complete ML lifecycles and wants to use Amazon S3 for the data storage. All of the company’s data currently resides on premises and is 40 ТВ in size.
The company wants a solution that can transfer and automatically update data between the on-premises object storage and Amazon S3. The solution must support encryption, scheduling, monitoring, and data integrity validation.
Which solution meets these requirements?
A Data Scientist is training a multilayer perception (MLP) on a dataset with multiple classes. The target class of interest is unique compared to the other classes within the dataset, but it does not achieve and acceptable ecall metric. The Data Scientist has already tried varying the number and size of the MLP’s hidden layers,
which has not significantly improved the results. A solution to improve recall must be implemented as quickly as possible.
Which techniques should be used to meet these requirements?
A Machine Learning Specialist uploads a dataset to an Amazon S3 bucket protected with server-side
encryption using AWS KMS.
How should the ML Specialist define the Amazon SageMaker notebook instance so it can read the same
dataset from Amazon S3?
PDF + Testing Engine
|
---|
$66 |
Testing Engine
|
---|
$50 |
PDF (Q&A)
|
---|
$42 |
Amazon Web Services Free Exams |
---|
![]() |