Weekend Sale 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sale65best

Free Amazon Web Services MLS-C01 Practice Exam with Questions & Answers | Set: 4

Questions 31

A manufacturer is operating a large number of factories with a complex supply chain relationship where unexpected downtime of a machine can cause production to stop at several factories. A data scientist wants to analyze sensor data from the factories to identify equipment in need of preemptive maintenance and then dispatch a service team to prevent unplanned downtime. The sensor readings from a single machine can include up to 200 data points including temperatures, voltages, vibrations, RPMs, and pressure readings.

To collect this sensor data, the manufacturer deployed Wi-Fi and LANs across the factories. Even though many factory locations do not have reliable or high-speed internet connectivity, the manufacturer would like to maintain near-real-time inference capabilities.

Which deployment architecture for the model will address these business requirements?

Options:
A.

Deploy the model in Amazon SageMaker. Run sensor data through this model to predict which machines need maintenance.

B.

Deploy the model on AWS IoT Greengrass in each factory. Run sensor data through this model to infer which machines need maintenance.

C.

Deploy the model to an Amazon SageMaker batch transformation job. Generate inferences in a daily batch report to identify machines that need maintenance.

D.

Deploy the model in Amazon SageMaker and use an IoT rule to write data to an Amazon DynamoDB table. Consume a DynamoDB stream from the table with an AWS Lambda function to invoke the endpoint.

Amazon Web Services MLS-C01 Premium Access
Questions 32

A real-estate company is launching a new product that predicts the prices of new houses. The historical data for the properties and prices is stored in .csv format in an Amazon S3 bucket. The data has a header, some categorical fields, and some missing values. The company’s data scientists have used Python with a common open-source library to fill the missing values with zeros. The data scientists have dropped all of the categorical fields and have trained a model by using the open-source linear regression algorithm with the default parameters.

The accuracy of the predictions with the current model is below 50%. The company wants to improve the model performance and launch the new product as soon as possible.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

Create a service-linked role for Amazon Elastic Container Service (Amazon ECS) with access to the S3 bucket. Create an ECS cluster that is based on an AWS Deep Learning Containers image. Write the code to perform the feature engineering. Train a logistic regression model for predicting the price, pointing to the bucket with the dataset. Wait for the training job to complete. Perform the inferences.

B.

Create an Amazon SageMaker notebook with a new IAM role that is associated with the notebook. Pull the dataset from the S3 bucket. Explore different combinations of feature engineering transformations, regression algorithms, and hyperparameters. Compare all the results in the notebook, and deploy the most accurate configuration in an endpoint for predictions.

C.

Create an IAM role with access to Amazon S3, Amazon SageMaker, and AWS Lambda. Create a training job with the SageMaker built-in XGBoost model pointing to the bucket with the dataset. Specify the price as the target feature. Wait for the job to complete. Load the model artifact to a Lambda function for inference on prices of new houses.

D.

Create an IAM role for Amazon SageMaker with access to the S3 bucket. Create a SageMaker AutoML job with SageMaker Autopilot pointing to the bucket with the dataset. Specify the price as the target attribute. Wait for the job to complete. Deploy the best model for predictions.

Questions 33

A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased.

Which solution will meet these requirements with the LEAST development effort?

Options:
A.

Train a model by using a user-based collaborative filtering algorithm on Amazon SageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.

B.

Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking API operation to get the real-time recommendations.

C.

Use an Amazon Personalize USER_ PERSONAL IZATION recipe to train a model Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetRecommendations API operation to get the real-time recommendations.

D.

Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.

Questions 34

Amazon Connect has recently been tolled out across a company as a contact call center The solution has been configured to store voice call recordings on Amazon S3

The content of the voice calls are being analyzed for the incidents being discussed by the call operators Amazon Transcribe is being used to convert the audio to text, and the output is stored on Amazon S3

Which approach will provide the information required for further analysis?

Options:
A.

Use Amazon Comprehend with the transcribed files to build the key topics

B.

Use Amazon Translate with the transcribed files to train and build a model for the key topics

C.

Use the AWS Deep Learning AMI with Gluon Semantic Segmentation on the transcribed files to train and build a model for the key topics

D.

Use the Amazon SageMaker k-Nearest-Neighbors (kNN) algorithm on the transcribed files to generate a word embeddings dictionary for the key topics

Questions 35

A Data Scientist wants to gain real-time insights into a data stream of GZIP files. Which solution would allow the use of SQL to query the stream with the LEAST latency?

Options:
A.

Amazon Kinesis Data Analytics with an AWS Lambda function to transform the data.

B.

AWS Glue with a custom ETL script to transform the data.

C.

An Amazon Kinesis Client Library to transform the data and save it to an Amazon ES cluster.

D.

Amazon Kinesis Data Firehose to transform the data and put it into an Amazon S3 bucket.

Questions 36

A Machine Learning Specialist receives customer data for an online shopping website. The data includes demographics, past visits, and locality information. The Specialist must develop a machine learning approach to identify the customer shopping patterns, preferences and trends to enhance the website for better service and smart recommendations.

Which solution should the Specialist recommend?

Options:
A.

Latent Dirichlet Allocation (LDA) for the given collection of discrete data to identify patterns in the customer database.

B.

A neural network with a minimum of three layers and random initial weights to identify patterns in the customer database

C.

Collaborative filtering based on user interactions and correlations to identify patterns in the customer database

D.

Random Cut Forest (RCF) over random subsamples to identify patterns in the customer database

Questions 37

A company wants to use automatic speech recognition (ASR) to transcribe messages that are less than 60 seconds long from a voicemail-style application. The company requires the correct identification of 200 unique product names, some of which have unique spellings or pronunciations.

The company has 4,000 words of Amazon SageMaker Ground Truth voicemail transcripts it can use to customize the chosen ASR model. The company needs to ensure that everyone can update their customizations multiple times each hour.

Which approach will maximize transcription accuracy during the development phase?

Options:
A.

Use a voice-driven Amazon Lex bot to perform the ASR customization. Create customer slots within the bot that specifically identify each of the required product names. Use the Amazon Lex synonym mechanism to provide additional variations of each product name as mis-transcriptions are identified in development.

B.

Use Amazon Transcribe to perform the ASR customization. Analyze the word confidence scores in the transcript, and automatically create or update a custom vocabulary file with any word that has a confidence score below an acceptable threshold value. Use this updated custom vocabulary file in all future transcription tasks.

C.

Create a custom vocabulary file containing each product name with phonetic pronunciations, and use it with Amazon Transcribe to perform the ASR customization. Analyze the transcripts and manually update the custom vocabulary file to include updated or additional entries for those names that are not being correctly identified.

D.

Use the audio transcripts to create a training dataset and build an Amazon Transcribe custom language model. Analyze the transcripts and update the training dataset with a manually corrected version of transcripts where product names are not being transcribed correctly. Create an updated custom language model.

Questions 38

A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only

How should the Machine Learning Specialist transform the dataset to minimize query runtime?

Options:
A.

Convert the records to Apache Parquet format

B.

Convert the records to JSON format

C.

Convert the records to GZIP CSV format

D.

Convert the records to XML format

Questions 39

A company provisions Amazon SageMaker notebook instances for its data science team and creates Amazon VPC interface endpoints to ensure communication between the VPC and the notebook instances. All connections to the Amazon SageMaker API are contained entirely and securely using the AWS network. However, the data science team realizes that individuals outside the VPC can still connect to the notebook instances across the internet.

Which set of actions should the data science team take to fix the issue?

Options:
A.

Modify the notebook instances' security group to allow traffic only from the CIDR ranges of the VPC. Apply this security group to all of the notebook instances' VPC interfaces.

B.

Create an IAM policy that allows the sagemaker:CreatePresignedNotebooklnstanceUrl and sagemaker:DescribeNotebooklnstance actions from only the VPC endpoints. Apply this policy to all IAM users, groups, and roles used to access the notebook instances.

C.

Add a NAT gateway to the VPC. Convert all of the subnets where the Amazon SageMaker notebook instances are hosted to private subnets. Stop and start all of the notebook instances to reassign only private IP addresses.

D.

Change the network ACL of the subnet the notebook is hosted in to restrict access to anyone outside the VPC.

Questions 40

A data scientist is using the Amazon SageMaker Neural Topic Model (NTM) algorithm to build a model that recommends tags from blog posts. The raw blog post data is stored in an Amazon S3 bucket in JSON format. During model evaluation, the data scientist discovered that the model recommends certain stopwords such as "a," "an,” and "the" as tags to certain blog posts, along with a few rare words that are present only in certain blog entries. After a few iterations of tag review with the content team, the data scientist notices that the rare words are unusual but feasible. The data scientist also must ensure that the tag recommendations of the generated model do not include the stopwords.

What should the data scientist do to meet these requirements?

Options:
A.

Use the Amazon Comprehend entity recognition API operations. Remove the detected words from the blog post data. Replace the blog post data source in the S3 bucket.

B.

Run the SageMaker built-in principal component analysis (PCA) algorithm with the blog post data from the S3 bucket as the data source. Replace the blog post data in the S3 bucket with the results of the training job.

C.

Use the SageMaker built-in Object Detection algorithm instead of the NTM algorithm for the training job to process the blog post data.

D.

Remove the stop words from the blog post data by using the Count Vectorizer function in the scikit-learn library. Replace the blog post data in the S3 bucket with the results of the vectorizer.