A company uses an ML model to recommend videos to users. The model is deployed on Amazon SageMaker AI. The model performed well initially after deployment, but the model's performance has degraded over time.
Which solution can the company use to identify model drift in the future?
An ML engineer is evaluating several ML models and must choose one model to use in production. The cost of false negative predictions by the models is much higher than the cost of false positive predictions.
Which metric finding should the ML engineer prioritize the MOST when choosing the model?
An ML engineer has developed a binary classification model outside of Amazon SageMaker. The ML engineer needs to make the model accessible to a SageMaker Canvas user for additional tuning.
The model artifacts are stored in an Amazon S3 bucket. The ML engineer and the Canvas user are part of the same SageMaker domain.
Which combination of requirements must be met so that the ML engineer can share the model with the Canvas user? (Choose two.)
An ML engineer needs to use AWS services to identify and extract meaningful unique keywords from documents.
Which solution will meet these requirements with the LEAST operational overhead?
A company is developing an ML model for a customer. The training data is stored in an Amazon S3 bucket in the customer's AWS account (Account A). The company runs Amazon SageMaker AI training jobs in a separate AWS account (Account B).
The company defines an S3 bucket policy and an IAM policy to allow reads to the S3 bucket.
Which additional steps will meet the cross-account access requirement?
A company is developing a generative AI conversational interface to assist customers with payments. The company wants to use an ML solution to detect customer intent. The company does not have training data to train a model.
Which solution will meet these requirements?
A company is creating an ML model to identify defects in a product. The company has gathered a dataset and has stored the dataset in TIFF format in Amazon S3. The dataset contains 200 images in which the most common defects are visible. The dataset also contains 1,800 images in which there is no defect visible.
An ML engineer trains the model and notices poor performance in some classes. The ML engineer identifies a class imbalance problem in the dataset.
What should the ML engineer do to solve this problem?
An ML engineer needs to use an ML model to predict the price of apartments in a specific location.
Which metric should the ML engineer use to evaluate the model's performance?
An ML engineer needs to deploy ML models to get inferences from large datasets in an asynchronous manner. The ML engineer also needs to implement scheduled monitoring of data quality for the models and must receive alerts when changes in data quality occur.
Which solution will meet these requirements?
A company has historical data that shows whether customers needed long-term support from company staff. The company needs to develop an ML model to predict whether new customers will require long-term support.
Which modeling approach should the company use to meet this requirement?
|
PDF + Testing Engine
|
|---|
|
$49.5 |
|
Testing Engine
|
|---|
|
$37.5 |
|
PDF (Q&A)
|
|---|
|
$31.5 |
Amazon Web Services Free Exams |
|---|
|