An ML engineer needs to deploy ML models to get inferences from large datasets in an asynchronous manner. The ML engineer also needs to implement scheduled monitoring of the data quality of the models. The ML engineer must receive alerts when changes in data quality occur.
Which solution will meet these requirements?
An ML engineer is setting up an Amazon SageMaker AI pipeline for an ML model. The pipeline must automatically initiate a retraining job if any data drift is detected.
How should the ML engineer set up the pipeline to meet this requirement?
A company has AWS Glue data processing jobs that are orchestrated by an AWS Glue workflow. The AWS Glue jobs can run on a schedule or can be launched manually.
The company is developing pipelines in Amazon SageMaker Pipelines for ML model development. The pipelines will use the output of the AWS Glue jobs during the data processing phase of model development. An ML engineer needs to implement a solution that integrates the AWS Glue jobs with the pipelines.
Which solution will meet these requirements with the LEAST operational overhead?
An ML engineer is training an ML model to identify medical patients for disease screening. The tabular dataset for training contains 50,000 patient records: 1,000 with the disease and 49,000 without the disease.
The ML engineer splits the dataset into a training dataset, a validation dataset, and a test dataset.
What should the ML engineer do to transform the data and make the data suitable for training?
A company has significantly increased the amount of data that is stored as .csv files in an Amazon S3 bucket. Data transformation scripts and queries are now taking much longer than they used to take.
An ML engineer must implement a solution to optimize the data for query performance.
Which solution will meet this requirement with the LEAST operational overhead?
A company's ML engineer has deployed an ML model for sentiment analysis to an Amazon SageMaker endpoint. The ML engineer needs to explain to company stakeholders how the model makes predictions.
Which solution will provide an explanation for the model's predictions?
An ML engineer has a custom container that performs k-fold cross-validation and logs an average F1 score during training. The ML engineer wants Amazon SageMaker AI Automatic Model Tuning (AMT) to select hyperparameters that maximize the average F1 score.
How should the ML engineer integrate the custom metric into SageMaker AI AMT?
Case Study
A company is building a web-based AI application by using Amazon SageMaker. The application will provide the following capabilities and features: ML experimentation, training, a
central model registry, model deployment, and model monitoring.
The application must ensure secure and isolated use of training data during the ML lifecycle. The training data is stored in Amazon S3.
The company needs to use the central model registry to manage different versions of models in the application.
Which action will meet this requirement with the LEAST operational overhead?
A company is uploading thousands of PDF policy documents into Amazon S3 and Amazon Bedrock Knowledge Bases. Each document contains structured sections. Users often search for a small section but need the full section context. The company wants accurate section-level search with automatic context retrieval and minimal custom coding.
Which chunking strategy meets these requirements?
A travel company wants to create an ML model to recommend the next airport destination for its users. The company has collected millions of data records about user location, recent search history on the company's website, and 2,000 available airports. The data has several categorical features with a target column that is expected to have a high-dimensional sparse matrix.
The company needs to use Amazon SageMaker AI built-in algorithms for the model. An ML engineer converts the categorical features by using one-hot encoding.
Which algorithm should the ML engineer implement to meet these requirements?
|
PDF + Testing Engine
|
|---|
|
$49.5 |
|
Testing Engine
|
|---|
|
$37.5 |
|
PDF (Q&A)
|
|---|
|
$31.5 |
Amazon Web Services Free Exams |
|---|
|