Spring Sale Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 70track

Free Amazon Web Services AIP-C01 Practice Exam with Questions & Answers | Set: 2

Questions 11

A media company must use Amazon Bedrock to implement a robust governance process for AI-generated content. The company needs to manage hundreds of prompt templates. Multiple teams use the templates across multiple AWS Regions to generate content. The solution must provide version control with approval workflows that include notifications for pending reviews. The solution must also provide detailed audit trails that document prompt activities and consistent prompt parameterization to enforce quality standards.

Which solution will meet these requirements?

Options:
A.

Configure Amazon Bedrock Studio prompt templates. Use Amazon CloudWatch dashboards to display prompt usage metrics. Store approval status in Amazon DynamoDB. Use AWS Lambda functions to enforce approvals.

B.

Use Amazon Bedrock Prompt Management to implement version control. Configure AWS CloudTrail for audit logging. Use AWS Identity and Access Management policies to control approval permissions. Create parameterized prompt templates by specifying variables.

C.

Use AWS Step Functions to create an approval workflow. Store prompts in Amazon S3. Use tags to implement version control. Use Amazon EventBridge to send notifications.

D.

Deploy Amazon SageMaker Canvas with prompt templates stored in Amazon S3. Use AWS CloudFormation for version control. Use AWS Config to enforce approval policies.

Amazon Web Services AIP-C01 Premium Access
Questions 12

A company wants to select a new FM for its AI assistant. A GenAI developer needs to generate evaluation reports to help a data scientist assess the quality and safety of various foundation models FMs. The data scientist provides the GenAI developer with sample prompts for evaluation. The GenAI developer wants to use Amazon Bedrock to automate report generation and evaluation.

Which solution will meet this requirement?

Options:
A.

Combine the sample prompts into a single JSON document. Create an Amazon Bedrock knowledge base with the document. Write a prompt that asks the FM to generate a response to each sample prompt. Use the RetrieveAndGenerate API to generate a report for each model.

B.

Combine the sample prompts into a single JSONL document. Store the document in an Amazon S3 bucket. Create an Amazon Bedrock evaluation job that uses a judge model. Specify the S3 location as input and a different S3 location as output. Run an evaluation job for each FM and select the FM as the generator.

C.

Combine the sample prompts into a single JSONL document. Store the document in an Amazon S3 bucket. Create an Amazon Bedrock evaluation job that uses a judge model. Specify the S3 location as input and Amazon QuickSight as output. Run an evaluation job for each FM and select the FM as the evaluator.

D.

Combine the sample prompts into a single JSON document. Create an Amazon Bedrock knowledge base from the document. Create an Amazon Bedrock evaluation job that uses the retrieval and response generation evaluation type. Specify an Amazon S3 bucket as the output. Run an evaluation job for each FM.

Questions 13

An ecommerce company is building an internal platform to develop generative AI applications by using Amazon Bedrock foundation models (FMs). Developers need to select models based on evaluations that are aligned to ecommerce use cases. The platform must display accuracy metrics for text generation and summarization in dashboards. The company has custom ecommerce datasets to use as standardized evaluation inputs.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)

Options:
A.

Import the datasets to an Amazon S3 bucket. Provide appropriate IAM permissions and cross-origin resource sharing (CORS) permissions to give the evaluation jobs access to the datasets.

B.

Import the datasets to an Amazon S3 bucket. Provide appropriate IAM permissions and a VPC endpoint configuration to give the evaluation jobs access to the datasets.

C.

Configure an AWS Lambda function to create model evaluation jobs on a schedule in the Amazon Bedrock console. Provide the URI of the S3 bucket that contains the datasets as an input. Configure the evaluation jobs to measure the real world knowledge (RWK) score for text generation and BERTScore for summarization. Configure a second Lambda function to check the status of the jobs and publish custom logs to Amazon CloudWatch. Create a custom A

D.

Use Amazon SageMaker Clarify on a schedule to create model evaluation jobs. Use open source frameworks to create and run standardized evaluations. Publish results to Amazon CloudWatch namespaces. Use an AWS Lambda function to check the status of the jobs and publish custom logs to Amazon CloudWatch. Create a custom Amazon CloudWatch Logs Insights dashboard.

E.

Run an Amazon SageMaker AI notebook job on a schedule by using the fmvelos or ragas framework to run evaluations that use the datasets in the S3 bucket. Write Python code in the notebook that makes direct InvokeModel API calls to the FMs and processes their responses for evaluation. Publish job status and results to Amazon CloudWatch Logs to measure the real world knowledge (RWK) score for text generation and toxicity for summarization as m

Questions 14

A medical company uses Amazon Bedrock to power a clinical documentation summarization system. The system produces inconsistent summaries when handling complex clinical documents. The system performed well on simple clinical documents.

The company needs a solution that diagnoses inconsistencies, compares prompt performance against established metrics, and maintains historical records of prompt versions.

Which solution will meet these requirements?

Options:
A.

Create multiple prompt variants by using Prompt management in Amazon Bedrock. Manually test the prompts with simple clinical documents. Deploy the highest performing version by using the Amazon Bedrock console.

B.

Implement version control for prompts in a code repository with a test suite that contains complex clinical documents and quantifiable evaluation metrics. Use an automated testing framework to compare prompt versions and document performance patterns.

C.

Deploy each new prompt version to separate Amazon Bedrock API endpoints. Split production traffic between the endpoints. Configure Amazon CloudWatch to capture response metrics and user feedback for automatic version selection.

D.

Create a custom prompt evaluation flow in Amazon Bedrock Flows that applies the same clinical document inputs to different prompt variants. Use Amazon Comprehend Medical to analyze and score the factual accuracy of each version.

Questions 15

Example Corp provides a personalized video generation service that millions of enterprise customers use. Customers generate marketing videos by submitting prompts to the company’s proprietary generative AI (GenAI) model. To improve output relevance and personalization, Example Corp wants to enhance the prompts by using customer-specific context such as product preferences, customer attributes, and business history.

The customers have strict data governance requirements. The customers must retain full ownership and control over their own data. The customers do not require real-time access. However, semantic accuracy must be high and retrieval latency must remain low to support customer experience use cases.

Example Corp wants to minimize architectural complexity in its integration pattern. Example Corp does not want to deploy and manage services in each customer’s environment unless necessary.

Which solution will meet these requirements?

Options:
A.

Ensure that each customer sets up an Amazon Q Business index that includes the customer’s internal data. Ensure that each customer designates Example Corp as a data accessor to allow Example Corp to retrieve relevant content by using a secure API to enrich prompts at runtime.

B.

Use federated search with Model Context Protocol (MCP) by deploying real-time MCP servers for each customer. Retrieve data in real time during prompt generation.

C.

Ensure that each customer configures an Amazon Bedrock knowledge base. Allow cross-account querying so Example Corp can retrieve structured data for prompt augmentation.

D.

Configure Amazon Kendra to crawl customer data sources. Share the resulting indexes across accounts so Example Corp can query each customer’s Amazon Kendra index to retrieve augmentation data.

Questions 16

A company provides a service that helps users from around the world discover new restaurants. The service has 50 million monthly active users. The company wants to implement a semantic search solution across a database that contains 20 million restaurants and 200 million reviews. The company currently stores the data in PostgreSQL.

The solution must support complex natural language queries and return results for at least 95% of queries within 500 ms. The solution must maintain data freshness for restaurant details that update hourly. The solution must also scale cost-effectively during peak usage periods.

Which solution will meet these requirements with the LEAST development effort?

Options:
A.

Migrate the restaurant data to Amazon OpenSearch Service. Implement keyword-based search rules that use custom analyzers and relevance tuning to find restaurants based on attributes such as cuisine type, features, and location. Create Amazon API Gateway HTTP API endpoints to transform user queries into structured search parameters.

B.

Migrate the restaurant data to Amazon OpenSearch Service. Use a foundation model (FM) in Amazon Bedrock to generate vector embeddings from restaurant descriptions, reviews, and menu items. When users submit natural language queries, convert the queries to embeddings by using the same FM. Perform k-nearest neighbors (k-NN) searches to find semantically similar results.

C.

Keep the restaurant data in PostgreSQL and implement a pgvector extension. Use a foundation model (FM) in Amazon Bedrock to generate vector embeddings from restaurant data. Store the vector embeddings directly in PostgreSQL. Create an AWS Lambda function to convert natural language queries to vector representations by using the same FM. Configure the Lambda function to perform similarity searches within the database.

D.

Migrate restaurant data to an Amazon Bedrock knowledge base by using a custom ingestion pipeline. Configure the knowledge base to automatically generate embeddings from restaurant information. Use the Amazon Bedrock Retrieve API with built-in vector search capabilities to query the knowledge base directly by using natural language input.

Questions 17

A publishing company is developing a chat assistant that uses a containerized large language model (LLM) that runs on Amazon SageMaker AI. The architecture consists of an Amazon API Gateway REST API that routes user requests to an AWS Lambda function. The Lambda function invokes a SageMaker AI real-time endpoint that hosts the LLM.

Users report uneven response times. Analytics show that a high number of chats are abandoned after 2 seconds of waiting for the first token. The company wants a solution to ensure that p95 latency is under 800 ms for interactive requests to the chat assistant.

Which combination of solutions will meet this requirement? (Select TWO.)

Options:
A.

Enable model preload upon container startup. Implement dynamic batching to process multiple user requests together in a single inference pass.

B.

Select a larger GPU instance type for the SageMaker AI endpoint. Set the minimum number of instances to 0. Continue to perform per-request processing. Lazily load model weights on the first request.

C.

Switch to a multi-model endpoint. Use lazy loading without request batching.

D.

Set the minimum number of instances to greater than 0. Enable response streaming.

E.

Switch to Amazon SageMaker Asynchronous Inference for all requests. Store requests in an Amazon S3 bucket. Set the minimum number of instances to 0.

Questions 18

A company is using Amazon Bedrock to develop a customer support AI assistant. The AI assistant must respond to customer questions about their accounts. The AI assistant must not expose personal information in responses. The company must comply with data residency policies by ensuring that all processing occurs within the same AWS Region where each customer is located.

The company wants to evaluate how effective the AI assistant is at preventing the exposure of personal information before the company makes the AI assistant available to customers.

Which solution will meet these requirements?

Options:
A.

Configure a cross-Region Amazon Bedrock guardrail to apply sensitive information filters. Set the guardrail to detect mode during development and testing. Switch to block mode for production deployment.

B.

Configure an Amazon Bedrock guardrail to apply sensitive information filters. Set the guardrail to mask mode during development and testing. Switch to block mode for production deployment. Deploy a copy of the guardrail to each Region where the company operates.

C.

Configure an Amazon Bedrock guardrail to apply content and topic filters. Set the guardrail to detect mode during development, testing, and production. Disable invocation logging for the Amazon Bedrock model.

D.

Configure a cross-Region Amazon Bedrock guardrail to apply a set of content and word filters. Set the guardrail to detect mode during development and testing. Switch to mask mode for production deployment.

Questions 19

A medical company is building a generative AI (GenAI) application that uses Retrieval Augmented Generation (RAG) to provide evidence-based medical information. The application uses Amazon OpenSearch Service to retrieve vector embeddings. Users report that searches frequently miss results that contain exact medical terms and acronyms and return too many semantically similar but irrelevant documents. The company needs to improve retrieval quality and maintain low end-user latency, even as the document collection grows to millions of documents.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

Configure hybrid search by combining vector similarity with keyword matching to improve semantic understanding and exact term and acronym matching.

B.

Increase the dimensions of the vector embeddings from 384 to 1536. Use a post-processing AWS Lambda function to filter out irrelevant results after retrieval.

C.

Replace OpenSearch Service with Amazon Kendra. Use query expansion to handle medical acronyms and terminology variants during pre-processing.

D.

Implement a two-stage retrieval architecture in which initial vector search results are re-ranked by an ML model hosted on Amazon SageMaker.

Questions 20

A company is using Amazon Bedrock to develop an AI-powered application that uses a foundation model that supports cross-Region inference and provisioned throughput. The application must serve users in Europe and North America with consistently low latency. The application must comply with data residency regulations that require European user data to remain within Europe-based AWS Regions.

During testing, the application experiences service degradation when Regional traffic spikes reach service quotas. The company needs a solution that maintains application resilience and minimizes operational complexity.

Which solution will meet these requirements?

Options:
A.

Deploy separate Amazon Bedrock instances in North American and European Regions. Use a custom routing layer that directs traffic based on user location. Configure Amazon CloudWatch alarms to monitor Regional service usage. Use Amazon SNS to send email alerts to the company when usage approaches specified thresholds.

B.

Use Amazon Bedrock cross-Region inference profiles by specifying geographical codes in profile IDs when the application calls the InvokeModel API. Configure separate Amazon API Gateway HTTP APIs to direct European and North American users to the appropriate Regional endpoints.

C.

Deploy a multi-Region Amazon API Gateway HTTP API and AWS Lambda functions that implement retry logic to handle throttling. Configure the Lambda functions to call the foundation model in the nearest secondary Region when the application reaches service quotas in the primary Region. Use intelligent routing to ensure compliance with data residency requirements.

D.

Configure provisioned throughput for Amazon Bedrock in multiple Regions. Implement failover logic in the application code to switch between Regions when throttling occurs. Use AWS Global Accelerator to route traffic to the appropriate endpoints based on user location.

Exam Code: AIP-C01
Certification Provider: Amazon Web Services
Exam Name: AWS Certified Generative AI Developer - Professional
Last Update: Feb 21, 2026
Questions: 107