A GenAI developer is building a Retrieval Augmented Generation (RAG)-based customer support application that uses Amazon Bedrock foundation models (FMs). The application needs to process 50 GB of historical customer conversations that are stored in an Amazon S3 bucket as JSON files. The application must use the processed data as its retrieval corpus. The application’s data processing workflow must extract relevant data from customer support documents, remove customer personally identifiable information (PII), and generate embeddings for vector storage. The processing workflow must be cost-effective and must finish within 4 hours.
Which solution will meet these requirements with the LEAST operational overhead?
A company has a generative AI (GenAI) application that uses Amazon Bedrock to provide real-time responses to customer queries. The company has noticed intermittent failures with API calls to foundation models (FMs) during peak traffic periods.
The company needs a solution to handle transient errors and provide detailed observability into FM performance. The solution must prevent cascading failures during throttling events and provide distributed tracing across service boundaries to identify latency contributors. The solution must also enable correlation of performance issues with specific FM characteristics.
Which solution will meet these requirements?
An elevator service company has developed an AI assistant application by using Amazon Bedrock. The application generates elevator maintenance recommendations to support the company’s elevator technicians. The company uses Amazon Kinesis Data Streams to collect the elevator sensor data.
New regulatory rules require that a human technician must review all AI-generated recommendations. The company needs to establish human oversight workflows to review and approve AI recommendations. The company must store all human technician review decisions for audit purposes.
Which solution will meet these requirements?
A medical company is creating a generative AI (GenAI) system by using Amazon Bedrock. The system processes data from various sources and must maintain end-to-end data lineage. The system must also use real-time personally identifiable information (PII) filtering and audit trails to automatically report compliance.
Which solution will meet these requirements?
A financial services company is developing a generative AI (GenAI) application that serves both premium customers and standard customers. The application uses AWS Lambda functions behind an Amazon API Gateway REST API to process requests. The company needs to dynamically switch between AI models based on which customer tier each user belongs to. The company also wants to perform A/B testing for new features without redeploying code. The company needs to validate model parameters like temperature and maximum token limits before applying changes.
Which solution will meet these requirements with the LEAST operational overhead?
A healthcare company is using Amazon Bedrock to develop a real-time patient care AI assistant to respond to queries for separate departments that handle clinical inquiries, insurance verification, appointment scheduling, and insurance claims. The company wants to use a multi-agent architecture.
The company must ensure that the AI assistant is scalable and can onboard new features for patients. The AI assistant must be able to handle thousands of parallel patient interactions. The company must ensure that patients receive appropriate domain-specific responses to queries.
Which solution will meet these requirements?
A retail company has a generative AI (GenAI) product recommendation application that uses Amazon Bedrock. The application suggests products to customers based on browsing history and demographics. The company needs to implement fairness evaluation across multiple demographic groups to detect and measure bias in recommendations between two prompt approaches. The company wants to collect and monitor fairness metrics in real time. The company must receive an alert if the fairness metrics show a discrepancy of more than 15% between demographic groups. The company must receive weekly reports that compare the performance of the two prompt approaches.
Which solution will meet these requirements with the LEAST custom development effort?
A company is implementing a serverless inference API by using AWS Lambda. The API will dynamically invoke multiple AI models hosted on Amazon Bedrock. The company needs to design a solution that can switch between model providers without modifying or redeploying Lambda code in real time. The design must include safe rollout of configuration changes and validation and rollback capabilities.
Which solution will meet these requirements?
An ecommerce company operates a global product recommendation system that needs to switch between multiple foundation models (FM) in Amazon Bedrock based on regulations, cost optimization, and performance requirements. The company must apply custom controls based on proprietary business logic, including dynamic cost thresholds, AWS Region-specific compliance rules, and real-time A/B testing across multiple FMs.
The system must be able to switch between FMs without deploying new code. The system must route user requests based on complex rules including user tier, transaction value, regulatory zone, and real-time cost metrics that change hourly and require immediate propagation across thousands of concurrent requests.
Which solution will meet these requirements?
A specialty coffee company has a mobile app that generates personalized coffee roast profiles by using Amazon Bedrock with a three-stage prompt chain. The prompt chain converts user inputs into structured metadata, retrieves relevant logs for coffee roasts, and generates a personalized roast recommendation for each customer.
Users in multiple AWS Regions report inconsistent roast recommendations for identical inputs, slow inference during the retrieval step, and unsafe recommendations such as brewing at excessively high temperatures. The company must improve the stability of outputs for repeated inputs. The company must also improve app performance and the safety of the app's outputs. The updated solution must ensure 99.5% output consistency for identical inputs and achieve inference latency of less than 1 second. The solution must also block unsafe or hallucinated recommendations by using validated safety controls.
Which solution will meet these requirements?
|
PDF + Testing Engine
|
|---|
|
$49.5 |
|
Testing Engine
|
|---|
|
$37.5 |
|
PDF (Q&A)
|
|---|
|
$31.5 |
Amazon Web Services Free Exams |
|---|
|