A company is building an inventory management system and an inventory reordering system to automatically reorder products. Both systems use Amazon Kinesis Data Streams. The inventory management system uses the Amazon Kinesis Producer Library (KPL) to publish data to a stream. The inventory reordering system uses the Amazon Kinesis Client Library (KCL) to consume data from the stream. The company configures the stream to scale up and down as needed.
Before the company deploys the systems to production, the company discovers that the inventory reordering system received duplicated data.
Which factors could have caused the reordering system to receive duplicated data? (Select TWO.)
A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.
When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.
The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.
Which solution will meet these requirements MOST cost-effectively?
A data engineer needs to onboard a new data producer into AWS. The data producer needs to migrate data products to AWS.
The data producer maintains many data pipelines that support a business application. Each pipeline must have service accounts and their corresponding credentials. The data engineer must establish a secure connection from the data producer's on-premises data center to AWS. The data engineer must not use the public internet to transfer data from an on-premises data center to AWS.
Which solution will meet these requirements?
A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.
The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer is designing a log table for an application that requires continuous ingestion. The application must provide dependable API-based access to specific records from other applications. The application must handle more than 4,000 concurrent write operations and 6,500 read operations every second.
A data engineer needs to securely transfer 5 TB of data from an on-premises data center to an Amazon S3 bucket. Approximately 5% of the data changes every day. Updates to the data need to be regularly proliferated to the S3 bucket. The data includes files that are in multiple formats. The data engineer needs to automate the transfer process and must schedule the process to run periodically.
Which AWS service should the data engineer use to transfer the data in the MOST operationally efficient way?
A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.
Which data pipeline solutions will meet these requirements? (Choose two.)
A data engineer needs to optimize the performance of a data pipeline that handles retail orders. Data about the orders is ingested daily into an Amazon S3 bucket.
The data engineer runs queries once each week to extract metrics from the orders data based on the order date for multiple date ranges. The data engineer needs an optimization solution that ensures the query performance will not degrade when the volume of data increases.
A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.
The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.
Which solution will meet these requirements with the LEAST operational overhead?
A data engineer must implement Amazon Redshift Serverless as a data warehouse for a company. The data engineer needs to integrate multiple Amazon Aurora MySQL databases into Amazon Redshift. The solution must maintain near real-time latency and minimize infrastructure management as much as possible.
Which solution will meet these requirements?
|
PDF + Testing Engine
|
|---|
|
$49.5 |
|
Testing Engine
|
|---|
|
$37.5 |
|
PDF (Q&A)
|
|---|
|
$31.5 |
Amazon Web Services Free Exams |
|---|
|