Summer Special 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bestdeal

Free Amazon Web Services Data-Engineer-Associate Practice Exam with Questions & Answers | Set: 2

Questions 11

A data engineer needs to use an Amazon QuickSight dashboard that is based on Amazon Athena queries on data that is stored in an Amazon S3 bucket. When the data engineer connects to the QuickSight dashboard, the data engineer receives an error message that indicates insufficient permissions.

Which factors could cause to the permissions-related errors? (Choose two.)

Options:
A.

There is no connection between QuickSgqht and Athena.

B.

The Athena tables are not cataloged.

C.

QuickSiqht does not have access to the S3 bucket.

D.

QuickSight does not have access to decrypt S3 data.

E.

There is no 1AM role assigned to QuickSiqht.

Amazon Web Services Data-Engineer-Associate Premium Access
Questions 12

A company is migrating a legacy application to an Amazon S3 based data lake. A data engineer reviewed data that is associated with the legacy application. The data engineer found that the legacy data contained some duplicate information.

The data engineer must identify and remove duplicate information from the legacy application data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

Write a custom extract, transform, and load (ETL) job in Python. Use the DataFramedrop duplicatesf) function by importing the Pandas library to perform data deduplication.

B.

Write an AWS Glue extract, transform, and load (ETL) job. Use the FindMatches machine learning (ML) transform to transform the data to perform data deduplication.

C.

Write a custom extract, transform, and load (ETL) job in Python. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

D.

Write an AWS Glue extract, transform, and load (ETL) job. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

Questions 13

A data engineer configured an AWS Glue Data Catalog for data that is stored in Amazon S3 buckets. The data engineer needs to configure the Data Catalog to receive incremental updates.

The data engineer sets up event notifications for the S3 bucket and creates an Amazon Simple Queue Service (Amazon SQS) queue to receive the S3 events.

Which combination of steps should the data engineer take to meet these requirements with LEAST operational overhead? (Select TWO.)

Options:
A.

Create an S3 event-based AWS Glue crawler to consume events from the SQS queue.

B.

Define a time-based schedule to run the AWS Glue crawler, and perform incremental updates to the Data Catalog.

C.

Use an AWS Lambda function to directly update the Data Catalog based on S3 events that the SQS queue receives.

D.

Manually initiate the AWS Glue crawler to perform updates to the Data Catalog when there is a change in the S3 bucket.

E.

Use AWS Step Functions to orchestrate the process of updating the Data Catalog based on 53 events that the SQS queue receives.

Questions 14

A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.

The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.

The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.

Which solution will meet these requirements with the LEAST development effort?

Options:
A.

Run a scheduled AWS Glue extract, transform, and load (ETL) job to get the MySQL database updates by using a Java Database Connectivity (JDBC) connection. Set Amazon Redshift as the destination for the ETL job.

B.

Run a full load plus CDC task in AWS Database Migration Service (AWS DMS) to continuously replicate the MySQL database changes. Set Amazon Redshift as the destination for the task.

C.

Use the Amazon AppFlow SDK to build a custom connector for the MySQL database to continuously replicate the database changes. Set Amazon Redshift as the destination for the connector.

D.

Run scheduled AWS DataSync tasks to synchronize data from the MySQL database. Set Amazon Redshift as the destination for the tasks.

Questions 15

A company stores petabytes of data in thousands of Amazon S3 buckets in the S3 Standard storage class. The data supports analytics workloads that have unpredictable and variable data access patterns.

The company does not access some data for months. However, the company must be able to retrieve all data within milliseconds. The company needs to optimize S3 storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

Use S3 Storage Lens standard metrics to determine when to move objects to more cost-optimized storage classes. Create S3 Lifecycle policies for the S3 buckets to move objects to cost-optimized storage classes. Continue to refine the S3 Lifecycle policies in the future to optimize storage costs.

B.

Use S3 Storage Lens activity metrics to identify S3 buckets that the company accesses infrequently. Configure S3 Lifecycle rules to move objects from S3 Standard to the S3 Standard-Infrequent Access (S3 Standard-IA) and S3 Glacier storage classes based on the age of the data.

C.

Use S3 Intelligent-Tiering. Activate the Deep Archive Access tier.

D.

Use S3 Intelligent-Tiering. Use the default access tier.

Questions 16

A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.

The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.

Which solution will meet these requirements with the LEAST operational overhead?

Options:
A.

Use Amazon Aurora as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the Aurora data catalog. Schedule the Lambda functions to run periodically.

B.

Use the AWS Glue Data Catalog as the central metadata repository. Use AWS Glue crawlers to connect to multiple data stores and to update the Data Catalog with metadata changes. Schedule the crawlers to run periodically to update the metadata catalog.

C.

Use Amazon DynamoDB as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the DynamoDB data catalog. Schedule the Lambda functions to run periodically.

D.

Use the AWS Glue Data Catalog as the central metadata repository. Extract the schema for Amazon RDS and Amazon Redshift sources, and build the Data Catalog. Use AWS Glue crawlers for data that is in Amazon S3 to infer the schema and to automatically update the Data Catalog.

Questions 17

A company receives test results from testing facilities that are located around the world. The company stores the test results in millions of 1 KB JSON files in an Amazon S3 bucket. A data engineer needs to process the files, convert them into Apache Parquet format, and load them into Amazon Redshift tables. The data engineer uses AWS Glue to process the files, AWS Step Functions to orchestrate the processes, and Amazon EventBridge to schedule jobs.

The company recently added more testing facilities. The time required to process files is increasing. The data engineer must reduce the data processing time.

Which solution will MOST reduce the data processing time?

Options:
A.

Use AWS Lambda to group the raw input files into larger files. Write the larger files back to Amazon S3. Use AWS Glue to process the files. Load the files into the Amazon Redshift tables.

B.

Use the AWS Glue dynamic frame file-grouping option to ingest the raw input files. Process the files. Load the files into the Amazon Redshift tables.

C.

Use the Amazon Redshift COPY command to move the raw input files from Amazon S3 directly into the Amazon Redshift tables. Process the files in Amazon Redshift.

D.

Use Amazon EMR instead of AWS Glue to group the raw input files. Process the files in Amazon EMR. Load the files into the Amazon Redshift tables.

Questions 18

A company uploads .csv files to an Amazon S3 bucket. The company's data platform team has set up an AWS Glue crawler to perform data discovery and to create the tables and schemas.

An AWS Glue job writes processed data from the tables to an Amazon Redshift database. The AWS Glue job handles column mapping and creates the Amazon Redshift tables in the Redshift database appropriately.

If the company reruns the AWS Glue job for any reason, duplicate records are introduced into the Amazon Redshift tables. The company needs a solution that will update the Redshift tables without duplicates.

Which solution will meet these requirements?

Options:
A.

Modify the AWS Glue job to copy the rows into a staging Redshift table. Add SQL commands to update the existing rows with new values from the staging Redshift table.

B.

Modify the AWS Glue job to load the previously inserted data into a MySQL database. Perform an upsert operation in the MySQL database. Copy the results to the Amazon Redshift tables.

C.

Use Apache Spark's DataFrame dropDuplicates() API to eliminate duplicates. Write the data to the Redshift tables.

D.

Use the AWS Glue ResolveChoice built-in transform to select the value of the column from the most recent record.

Questions 19

A gaming company uses Amazon Kinesis Data Streams to collect clickstream data. The company uses Amazon Kinesis Data Firehose delivery streams to store the data in JSON format in Amazon S3. Data scientists at the company use Amazon Athena to query the most recent data to obtain business insights.

The company wants to reduce Athena costs but does not want to recreate the data pipeline.

Which solution will meet these requirements with the LEAST management effort?

Options:
A.

Change the Firehose output format to Apache Parquet. Provide a custom S3 object YYYYMMDD prefix expression and specify a large buffer size. For the existing data, create an AWS Glue extract, transform, and load (ETL) job. Configure the ETL job to combine small JSON files, convert the JSON files to large Parquet files, and add the YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena

B.

Create an Apache Spark job that combines JSON files and converts the JSON files to Apache Parquet files. Launch an Amazon EMR ephemeral cluster every day to run the Spark job to create new Parquet files in a different S3 location. Use the ALTER TABLE SET LOCATION statement to reflect the new S3 location on the existing Athena table.

C.

Create a Kinesis data stream as a delivery destination for Firehose. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to run Apache Flink on the Kinesis data stream. Use Flink to aggregate the data and save the data to Amazon S3 in Apache Parquet format with a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.<

D.

Integrate an AWS Lambda function with Firehose to convert source records to Apache Parquet and write them to Amazon S3. In parallel, run an AWS Glue extract, transform, and load (ETL) job to combine the JSON files and convert the JSON files to large Parquet files. Create a custom S3 object YYYYMMDD prefix. Use the ALTER TABLE ADD PARTITION statement to reflect the partition on the existing Athena table.

Questions 20

A company has a data processing pipeline that includes several dozen steps. The data processing pipeline needs to send alerts in real time when a step fails or succeeds. The data processing pipeline uses a combination of Amazon S3 buckets, AWS Lambda functions, and AWS Step Functions state machines.

A data engineer needs to create a solution to monitor the entire pipeline.

Which solution will meet these requirements?

Options:
A.

Configure the Step Functions state machines to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

B.

Configure the AWS Lambda functions to store notifications in an Amazon S3 bucket when the state machines finish running. Enable S3 event notifications on the S3 bucket.

C.

Use AWS CloudTrail to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications when a state machine fails to run or succeeds to run.

D.

Configure an Amazon EventBridge rule to react when the execution status of a state machine changes. Configure the rule to send a message to an Amazon Simple Notification Service (Amazon SNS) topic that sends notifications.