Weekend Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sale65best

Master the Amazon Web Services Data-Engineer-Associate Exam: Essential Study Tips and Strategies

Questions 1

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.

The data engineer's original query is as follows:

SELECT product_name, sum(sales_amount)

FROM sales_data

WHERE year = 2023

GROUP BY product_name

How should the data engineer modify the Athena query to meet these requirements?

Options:

A.

Replace sum(sales amount) with count(*J for the aggregation.

B.

Change WHERE year = 2023 to WHERE extractlyear FROM sales data) = 2023.

C.

Add HAVING sumfsales amount) > 0 after the GROUP BY clause.

D.

Remove the GROUP BY clause

Buy Now
Questions 2

A data engineer must ingest a source of structured data that is in .csv format into an Amazon S3 data lake. The .csv files contain 15 columns. Data analysts need to run Amazon Athena queries on one or two columns of the dataset. The data analysts rarely query the entire file.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use an AWS Glue PySpark job to ingest the source data into the data lake in .csv format.

B.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to ingest the data into the data lake in JSON format.

C.

Use an AWS Glue PySpark job to ingest the source data into the data lake in Apache Avro format.

D.

Create an AWS Glue extract, transform, and load (ETL) job to read from the .csv structured data source. Configure the job to write the data into the data lake in Apache Parquet format.

Buy Now
Questions 3

A data engineer has a one-time task to read data from objects that are in Apache Parquet format in an Amazon S3 bucket. The data engineer needs to query only one column of the data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Confiqure an AWS Lambda function to load data from the S3 bucket into a pandas dataframe- Write a SQL SELECT statement on the dataframe to query the required column.

B.

Use S3 Select to write a SQL SELECT statement to retrieve the required column from the S3 objects.

C.

Prepare an AWS Glue DataBrew project to consume the S3 objects and to query the required column.

D.

Run an AWS Glue crawler on the S3 objects. Use a SQL SELECT statement in Amazon Athena to query the required column.

Buy Now
Questions 4

A company uses Amazon Redshift for its data warehouse. The company must automate refresh schedules for Amazon Redshift materialized views.

Which solution will meet this requirement with the LEAST effort?

Options:

A.

Use Apache Airflow to refresh the materialized views.

B.

Use an AWS Lambda user-defined function (UDF) within Amazon Redshift to refresh the materialized views.

C.

Use the query editor v2 in Amazon Redshift to refresh the materialized views.

D.

Use an AWS Glue workflow to refresh the materialized views.

Buy Now
Questions 5

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

Options:

A.

Set up the sales team Bl cluster asa consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

Buy Now
Questions 6

A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.

The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Step Functions to pause the Redshift cluster when the analytics processes are complete and to resume the cluster to run new processes every month.

B.

Use Amazon Redshift Serverless to automatically process the analytics workload.

C.

Use the AWS CLI to automatically process the analytics workload.

D.

Use AWS CloudFormation templates to automatically process the analytics workload.

Buy Now
Questions 7

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

Options:

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Buy Now
Questions 8

A manufacturing company collects sensor data from its factory floor to monitor and enhance operational efficiency. The company uses Amazon Kinesis Data Streams to publish the data that the sensors collect to a data stream. Then Amazon Kinesis Data Firehose writes the data to an Amazon S3 bucket.

The company needs to display a real-time view of operational efficiency on a large screen in the manufacturing facility.

Which solution will meet these requirements with the LOWEST latency?

Options:

A.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Use a connector for Apache Flink to write data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

B.

Configure the S3 bucket to send a notification to an AWS Lambda function when any new object is created. Use the Lambda function to publish the data to Amazon Aurora. Use Aurora as a source to create an Amazon QuickSight dashboard.

C.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to process the sensor data. Create a new Data Firehose delivery stream to publish data directly to an Amazon Timestream database. Use the Timestream database as a source to create an Amazon QuickSight dashboard.

D.

Use AWS Glue bookmarks to read sensor data from the S3 bucket in real time. Publish the data to an Amazon Timestream database. Use the Timestream database as a source to create a Grafana dashboard.

Buy Now
Questions 9

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

Options:

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

Buy Now
Questions 10

A company has multiple applications that use datasets that are stored in an Amazon S3 bucket. The company has an ecommerce application that generates a dataset that contains personally identifiable information (PII). The company has an internal analytics application that does not require access to the PII.

To comply with regulations, the company must not share PII unnecessarily. A data engineer needs to implement a solution that with redact PII dynamically, based on the needs of each application that accesses the dataset.

Which solution will meet the requirements with the LEAST operational overhead?

Options:

A.

Create an S3 bucket policy to limit the access each application has. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.

B.

Create an S3 Object Lambda endpoint. Use the S3 Object Lambda endpoint to read data from the S3 bucket. Implement redaction logic within an S3 Object Lambda function to dynamically redact PII based on the needs of each application that accesses the data.

C.

Use AWS Glue to transform the data for each application. Create multiple copies of the dataset. Give each dataset copy the appropriate level of redaction for the needs of the application that accesses the copy.

D.

Create an API Gateway endpoint that has custom authorizers. Use the API Gateway endpoint to read data from the S3 bucket. Initiate a REST API call to dynamically redact PII based on the needs of each application that accesses the data.

Buy Now