Weekend Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: sale65best

Master the Amazon Web Services Data-Engineer-Associate Exam: Essential Study Tips and Strategies

Questions 11

A data engineer is configuring an AWS Glue job to read data from an Amazon S3 bucket. The data engineer has set up the necessary AWS Glue connection details and an associated IAM role. However, when the data engineer attempts to run the AWS Glue job, the data engineer receives an error message that indicates that there are problems with the Amazon S3 VPC gateway endpoint.

The data engineer must resolve the error and connect the AWS Glue job to the S3 bucket.

Which solution will meet this requirement?

Options:

A.

Update the AWS Glue security group to allow inbound traffic from the Amazon S3 VPC gateway endpoint.

B.

Configure an S3 bucket policy to explicitly grant the AWS Glue job permissions to access the S3 bucket.

C.

Review the AWS Glue job code to ensure that the AWS Glue connection details include a fully qualified domain name.

D.

Verify that the VPC's route table includes inbound and outbound routes for the Amazon S3 VPC gateway endpoint.

Buy Now
Questions 12

During a security review, a company identified a vulnerability in an AWS Glue job. The company discovered that credentials to access an Amazon Redshift cluster were hard coded in the job script.

A data engineer must remediate the security vulnerability in the AWS Glue job. The solution must securely store the credentials.

Which combination of steps should the data engineer take to meet these requirements? (Choose two.)

Options:

A.

Store the credentials in the AWS Glue job parameters.

B.

Store the credentials in a configuration file that is in an Amazon S3 bucket.

C.

Access the credentials from a configuration file that is in an Amazon S3 bucket by using the AWS Glue job.

D.

Store the credentials in AWS Secrets Manager.

E.

Grant the AWS Glue job 1AM role access to the stored credentials.

Buy Now
Questions 13

A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.

Which data pipeline solutions will meet these requirements? (Choose two.)

Options:

A.

Use an Amazon EventBridge rule to run an AWS Glue job every 15 minutes. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

B.

Use an Amazon EventBridge rule to invoke an AWS Glue workflow job every 15 minutes. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

C.

Configure an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket. Configure an AWS Glue job to process and load the data into the Amazon Redshift tables. Create a second Lambda function to run the AWS Glue job. Create an Amazon EventBridge rule to invoke the second Lambda function when the AWS Glue crawler finishes running successfully.

D.

Configure an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

E.

Configure an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket. Configure the AWS Glue job to read the files from the S3 bucket into an Apache Spark DataFrame. Configure the AWS Glue job to also put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream. Configure the delivery stream to load data into the Amazon Redshift tables.

Buy Now
Questions 14

A company is planning to migrate on-premises Apache Hadoop clusters to Amazon EMR. The company also needs to migrate a data catalog into a persistent storage solution.

The company currently stores the data catalog in an on-premises Apache Hive metastore on the Hadoop clusters. The company requires a serverless solution to migrate the data catalog.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Database Migration Service (AWS DMS) to migrate the Hive metastore into Amazon S3. Configure AWS Glue Data Catalog to scan Amazon S3 to produce the data catalog.

B.

Configure a Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use AWS Glue Data Catalog to store the company's data catalog as an external data catalog.

C.

Configure an external Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use Amazon Aurora MySQL to store the company's data catalog.

D.

Configure a new Hive metastore in Amazon EMR. Migrate the existing on-premises Hive metastore into Amazon EMR. Use the new metastore as the company's data catalog.

Buy Now
Questions 15

A company needs to set up a data catalog and metadata management for data sources that run in the AWS Cloud. The company will use the data catalog to maintain the metadata of all the objects that are in a set of data stores. The data stores include structured sources such as Amazon RDS and Amazon Redshift. The data stores also include semistructured sources such as JSON files and .xml files that are stored in Amazon S3.

The company needs a solution that will update the data catalog on a regular basis. The solution also must detect changes to the source metadata.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon Aurora as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the Aurora data catalog. Schedule the Lambda functions to run periodically.

B.

Use the AWS Glue Data Catalog as the central metadata repository. Use AWS Glue crawlers to connect to multiple data stores and to update the Data Catalog with metadata changes. Schedule the crawlers to run periodically to update the metadata catalog.

C.

Use Amazon DynamoDB as the data catalog. Create AWS Lambda functions that will connect to the data catalog. Configure the Lambda functions to gather the metadata information from multiple sources and to update the DynamoDB data catalog. Schedule the Lambda functions to run periodically.

D.

Use the AWS Glue Data Catalog as the central metadata repository. Extract the schema for Amazon RDS and Amazon Redshift sources, and build the Data Catalog. Use AWS Glue crawlers for data that is in Amazon S3 to infer the schema and to automatically update the Data Catalog.

Buy Now
Questions 16

A company needs to build a data lake in AWS. The company must provide row-level data access and column-level data access to specific teams. The teams will access the data by using Amazon Athena, Amazon Redshift Spectrum, and Apache Hive from Amazon EMR.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use Amazon S3 for data lake storage. Use S3 access policies to restrict data access by rows and columns. Provide data access throughAmazon S3.

B.

Use Amazon S3 for data lake storage. Use Apache Ranger through Amazon EMR to restrict data access byrows and columns. Providedata access by using Apache Pig.

C.

Use Amazon Redshift for data lake storage. Use Redshift security policies to restrict data access byrows and columns. Provide data accessby usingApache Spark and Amazon Athena federated queries.

D.

UseAmazon S3 for data lake storage. Use AWS Lake Formation to restrict data access by rows and columns. Provide data access through AWS Lake Formation.

Buy Now
Questions 17

An airline company is collecting metrics about flight activities for analytics. The company is conducting a proof of concept (POC) test to show how analytics can provide insights that the company can use to increase on-time departures.

The POC test uses objects in Amazon S3 that contain the metrics in .csv format. The POC test uses Amazon Athena to query the data. The data is partitioned in the S3 bucket by date.

As the amount of data increases, the company wants to optimize the storage solution to improve query performance.

Which combination of solutions will meet these requirements? (Choose two.)

Options:

A.

Add a randomized string to the beginning of the keys in Amazon S3 to get more throughput across partitions.

B.

Use an S3 bucket that is in the same account that uses Athena to query the data.

C.

Use an S3 bucket that is in the same AWS Region where the company runs Athena queries.

D.

Preprocess the .csvdata to JSON format by fetchingonly the document keys that the query requires.

E.

Preprocess the .csv data to Apache Parquet format by fetching only the data blocks that are needed for predicates.

Buy Now
Questions 18

A company has used an Amazon Redshift table that is named Orders for 6 months. The company performs weekly updates and deletes on the table. The table has an interleaved sort key on a column that contains AWS Regions.

The company wants to reclaim disk space so that the company will not run out of storage space. The company also wants to analyze the sort key column.

Which Amazon Redshift command will meet these requirements?

Options:

A.

VACUUM FULL Orders

B.

VACUUM DELETE ONLY Orders

C.

VACUUM REINDEX Orders

D.

VACUUM SORT ONLY Orders

Buy Now
Questions 19

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

Buy Now
Questions 20

A media company uses software as a service (SaaS) applications to gather data by using third-party tools. The company needs to store the data in an Amazon S3 bucket. The company will use Amazon Redshift to perform analytics based on the data.

Which AWS service or feature will meet these requirements with the LEAST operational overhead?

Options:

A.

Amazon Managed Streaming for Apache Kafka (Amazon MSK)

B.

Amazon AppFlow

C.

AWS Glue Data Catalog

D.

Amazon Kinesis

Buy Now