New Year Special 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bestdeal

Free Google Professional-Data-Engineer Practice Exam with Questions & Answers | Set: 2

Questions 11

You have a query that filters a BigQuery table using a WHERE clause on timestamp and ID columns. By using bq query – -dry_run you learn that the query triggers a full scan of the table, even though the filter on timestamp and ID select a tiny fraction of the overall data. You want to reduce the amount of data scanned by BigQuery with minimal changes to existing SQL queries. What should you do?

Options:
A.

Create a separate table for each ID.

B.

Use the LIMIT keyword to reduce the number of rows returned.

C.

Recreate the table with a partitioning column and clustering column.

D.

Use the bq query - -maximum_bytes_billed flag to restrict the number of bytes billed.

Questions 12

You need to deploy additional dependencies to all of a Cloud Dataproc cluster at startup using an existing initialization action. Company security policies require that Cloud Dataproc nodes do not have access to the Internet so public initialization actions cannot fetch resources. What should you do?

Options:
A.

Deploy the Cloud SQL Proxy on the Cloud Dataproc master

B.

Use an SSH tunnel to give the Cloud Dataproc cluster access to the Internet

C.

Copy all dependencies to a Cloud Storage bucket within your VPC security perimeter

D.

Use Resource Manager to add the service account used by the Cloud Dataproc cluster to the Network User role

Questions 13

You have enabled the free integration between Firebase Analytics and Google BigQuery. Firebase now

automatically creates a new table daily in BigQuery in the format app_events_YYYYMMDD. You want to

query all of the tables for the past 30 days in legacy SQL. What should you do?

Options:
A.

Use the TABLE_DATE_RANGE function

B.

Use the WHERE_PARTITIONTIME pseudo column

C.

Use WHERE date BETWEEN YYYY-MM-DD AND YYYY-MM-DD

D.

Use SELECT IF.(date >= YYYY-MM-DD AND date <= YYYY-MM-DD

Questions 14

Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.

Which approach should you take?

Options:
A.

Attach the timestamp on each message in the Cloud Pub/Sub subscriber application as they are received.

B.

Attach the timestamp and Package ID on the outbound message from each publisher device as they are sent to Clod Pub/Sub.

C.

Use the NOW () function in BigQuery to record the event’s time.

D.

Use the automatically generated timestamp from Cloud Pub/Sub to order the data.

Questions 15

Flowlogistic’s management has determined that the current Apache Kafka servers cannot handle the data volume for their real-time inventory tracking system. You need to build a new system on Google Cloud Platform (GCP) that will feed the proprietary tracking software. The system must be able to ingest data from a variety of global sources, process and query in real-time, and store the data reliably. Which combination of GCP products should you choose?

Options:
A.

Cloud Pub/Sub, Cloud Dataflow, and Cloud Storage

B.

Cloud Pub/Sub, Cloud Dataflow, and Local SSD

C.

Cloud Pub/Sub, Cloud SQL, and Cloud Storage

D.

Cloud Load Balancing, Cloud Dataflow, and Cloud Storage

Questions 16

You need to copy millions of sensitive patient records from a relational database to BigQuery. The total size of the database is 10 TB. You need to design a solution that is secure and time-efficient. What should you do?

Options:
A.

Export the records from the database as an Avro file. Upload the file to GCS using gsutil, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

B.

Export the records from the database as an Avro file. Copy the file onto a Transfer Appliance and send it to Google, and then load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

C.

Export the records from the database into a CSV file. Create a public URL for the CSV file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the CSV file into BigQuery using the BigQuery web UI in the GCP Console.

D.

Export the records from the database as an Avro file. Create a public URL for the Avro file, and then use Storage Transfer Service to move the file to Cloud Storage. Load the Avro file into BigQuery using the BigQuery web UI in the GCP Console.

Questions 17

Flowlogistic wants to use Google BigQuery as their primary analysis system, but they still have Apache Hadoop and Spark workloads that they cannot move to BigQuery. Flowlogistic does not know how to store the data that is common to both workloads. What should they do?

Options:
A.

Store the common data in BigQuery as partitioned tables.

B.

Store the common data in BigQuery and expose authorized views.

C.

Store the common data encoded as Avro in Google Cloud Storage.

D.

Store he common data in the HDFS storage for a Google Cloud Dataproc cluster.

Questions 18

You are designing the database schema for a machine learning-based food ordering service that will predict what users want to eat. Here is some of the information you need to store:

    The user profile: What the user likes and doesn’t like to eat

    The user account information: Name, address, preferred meal times

    The order information: When orders are made, from where, to whom

The database will be used to store all the transactional data of the product. You want to optimize the data schema. Which Google Cloud Platform product should you use?

Options:
A.

BigQuery

B.

Cloud SQL

C.

Cloud Bigtable

D.

Cloud Datastore

Questions 19

Your company produces 20,000 files every hour. Each data file is formatted as a comma separated values (CSV) file that is less than 4 KB. All files must be ingested on Google Cloud Platform before they can be processed. Your company site has a 200 ms latency to Google Cloud, and your Internet connection bandwidth is limited as 50 Mbps. You currently deploy a secure FTP (SFTP) server on a virtual machine in Google Compute Engine as the data ingestion point. A local SFTP client runs on a dedicated machine to transmit the CSV files as is. The goal is to make reports with data from the previous day available to the executives by 10:00 a.m. each day. This design is barely able to keep up with the current volume, even though the bandwidth utilization is rather low.

You are told that due to seasonality, your company expects the number of files to double for the next three months. Which two actions should you take? (choose two.)

Options:
A.

Introduce data compression for each file to increase the rate file of file transfer.

B.

Contact your internet service provider (ISP) to increase your maximum bandwidth to at least 100 Mbps.

C.

Redesign the data ingestion process to use gsutil tool to send the CSV files to a storage bucket in parallel.

D.

Assemble 1,000 files into a tape archive (TAR) file. Transmit the TAR files instead, and disassemble the CSV files in the cloud upon receiving them.

E.

Create an S3-compatible storage endpoint in your network, and use Google Cloud Storage Transfer Service to transfer on-premices data to the designated storage bucket.

Questions 20

You work for an economic consulting firm that helps companies identify economic trends as they happen. As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?

Options:
A.

Load the data every 30 minutes into a new partitioned table in BigQuery.

B.

Store and update the data in a regional Google Cloud Storage bucket and create a federated data source in BigQuery

C.

Store the data in Google Cloud Datastore. Use Google Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Cloud Datastore

D.

Store the data in a file in a regional Google Cloud Storage bucket. Use Cloud Dataflow to query BigQuery and combine the data programmatically with the data stored in Google Cloud Storage.